Loading…

Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal

By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy meta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2018-11, Vol.53 (21), p.15009-15024
Main Authors: Wang, Xin, Jing, Shiyao, Hou, Zhaosheng, Liu, Yingying, Qiu, Xiumin, Liu, Yusheng, Tan, Yebang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263
cites cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263
container_end_page 15024
container_issue 21
container_start_page 15009
container_title Journal of materials science
container_volume 53
creator Wang, Xin
Jing, Shiyao
Hou, Zhaosheng
Liu, Yingying
Qiu, Xiumin
Liu, Yusheng
Tan, Yebang
description By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe 3 O 4 @PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe 3 O 4 nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.
doi_str_mv 10.1007/s10853-018-2681-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259625257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550220711</galeid><sourcerecordid>A550220711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVJoJttf0Bvgp4CcSrJki33FkLaBgItSXoWsj32KsjSRpKT3R7y26PUhZBD0WHg6X0azTyEPlFySgmpv0RKpCgLQmXBKkmL3Tu0oqIuCy5JeYBWhDBWMF7R9-goxjtCiKgZXaGnXxAm0K2FExx8O8eEtevxpEcHyXR4s--DH8HiFnQfv-JHnSDgrG0tJJxg2lqdjBtx3Lu0gWjiX35Oxpo_-cY7PPiAN6Af9niCpC3OWsQBJv-g7Qd0OGgb4eO_uka_v13cnv8orn5-vzw_uyo6zqqUR-qk6KWkXFYNgOacAxA-tFDLVrIOKJOd5kxUDaVDzfq2roRuWFP2rQRWlWv0eXl3G_z9DDGpOz8Hl1sqxkRTMcHystbodHGN2oIybvAp6C6fHibTeQeDyfqZEHmZpKY0A8dvgOxJsEujnmNUlzfXb7108XbBxxhgUNtgJh32ihL1kqFaMlQ5Q_WSodplhi1MzF43Qnj99v-hZ0sXoC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259625257</pqid></control><display><type>article</type><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><source>Springer Link</source><creator>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</creator><creatorcontrib>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</creatorcontrib><description>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe 3 O 4 @PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe 3 O 4 nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2681-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Adsorbents ; Adsorption ; Beads ; Characterization and Evaluation of Materials ; Chelation ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystallography and Scattering Methods ; Droplets ; Fatigue strength ; Gelation ; Heavy metals ; Hydrogels ; Iron oxides ; Magnetic permeability ; Magnetic separation ; Mass transfer ; Materials Science ; Metal ions ; Organic chemistry ; Polymer Sciences ; Polymerization ; Solid Mechanics ; Surface tension ; Water drops</subject><ispartof>Journal of materials science, 2018-11, Vol.53 (21), p.15009-15024</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</citedby><cites>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</cites><orcidid>0000-0003-1804-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jing, Shiyao</creatorcontrib><creatorcontrib>Hou, Zhaosheng</creatorcontrib><creatorcontrib>Liu, Yingying</creatorcontrib><creatorcontrib>Qiu, Xiumin</creatorcontrib><creatorcontrib>Liu, Yusheng</creatorcontrib><creatorcontrib>Tan, Yebang</creatorcontrib><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe 3 O 4 @PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe 3 O 4 nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</description><subject>Activation energy</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Beads</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chelation</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Droplets</subject><subject>Fatigue strength</subject><subject>Gelation</subject><subject>Heavy metals</subject><subject>Hydrogels</subject><subject>Iron oxides</subject><subject>Magnetic permeability</subject><subject>Magnetic separation</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Solid Mechanics</subject><subject>Surface tension</subject><subject>Water drops</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr3DAQhUVJoJttf0Bvgp4CcSrJki33FkLaBgItSXoWsj32KsjSRpKT3R7y26PUhZBD0WHg6X0azTyEPlFySgmpv0RKpCgLQmXBKkmL3Tu0oqIuCy5JeYBWhDBWMF7R9-goxjtCiKgZXaGnXxAm0K2FExx8O8eEtevxpEcHyXR4s--DH8HiFnQfv-JHnSDgrG0tJJxg2lqdjBtx3Lu0gWjiX35Oxpo_-cY7PPiAN6Af9niCpC3OWsQBJv-g7Qd0OGgb4eO_uka_v13cnv8orn5-vzw_uyo6zqqUR-qk6KWkXFYNgOacAxA-tFDLVrIOKJOd5kxUDaVDzfq2roRuWFP2rQRWlWv0eXl3G_z9DDGpOz8Hl1sqxkRTMcHystbodHGN2oIybvAp6C6fHibTeQeDyfqZEHmZpKY0A8dvgOxJsEujnmNUlzfXb7108XbBxxhgUNtgJh32ihL1kqFaMlQ5Q_WSodplhi1MzF43Qnj99v-hZ0sXoC0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wang, Xin</creator><creator>Jing, Shiyao</creator><creator>Hou, Zhaosheng</creator><creator>Liu, Yingying</creator><creator>Qiu, Xiumin</creator><creator>Liu, Yusheng</creator><creator>Tan, Yebang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1804-5592</orcidid></search><sort><creationdate>20181101</creationdate><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><author>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Beads</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chelation</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Droplets</topic><topic>Fatigue strength</topic><topic>Gelation</topic><topic>Heavy metals</topic><topic>Hydrogels</topic><topic>Iron oxides</topic><topic>Magnetic permeability</topic><topic>Magnetic separation</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Solid Mechanics</topic><topic>Surface tension</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jing, Shiyao</creatorcontrib><creatorcontrib>Hou, Zhaosheng</creatorcontrib><creatorcontrib>Liu, Yingying</creatorcontrib><creatorcontrib>Qiu, Xiumin</creatorcontrib><creatorcontrib>Liu, Yusheng</creatorcontrib><creatorcontrib>Tan, Yebang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Jing, Shiyao</au><au>Hou, Zhaosheng</au><au>Liu, Yingying</au><au>Qiu, Xiumin</au><au>Liu, Yusheng</au><au>Tan, Yebang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>53</volume><issue>21</issue><spage>15009</spage><epage>15024</epage><pages>15009-15024</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe 3 O 4 @PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe 3 O 4 nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2681-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1804-5592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-11, Vol.53 (21), p.15009-15024
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259625257
source Springer Link
subjects Activation energy
Adsorbents
Adsorption
Beads
Characterization and Evaluation of Materials
Chelation
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Crosslinking
Crystallography and Scattering Methods
Droplets
Fatigue strength
Gelation
Heavy metals
Hydrogels
Iron oxides
Magnetic permeability
Magnetic separation
Mass transfer
Materials Science
Metal ions
Organic chemistry
Polymer Sciences
Polymerization
Solid Mechanics
Surface tension
Water drops
title Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeable,%20robust%20and%20magnetic%20hydrogel%20beads:%20water%20droplet%20templating%20synthesis%20and%20utilization%20for%20heavy%20metal%20ions%20removal&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Xin&rft.date=2018-11-01&rft.volume=53&rft.issue=21&rft.spage=15009&rft.epage=15024&rft.pages=15009-15024&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2681-x&rft_dat=%3Cgale_proqu%3EA550220711%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259625257&rft_id=info:pmid/&rft_galeid=A550220711&rfr_iscdi=true