Loading…
Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal
By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe 3 O 4 @PVAM) adsorbent material for heavy meta...
Saved in:
Published in: | Journal of materials science 2018-11, Vol.53 (21), p.15009-15024 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263 |
container_end_page | 15024 |
container_issue | 21 |
container_start_page | 15009 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Wang, Xin Jing, Shiyao Hou, Zhaosheng Liu, Yingying Qiu, Xiumin Liu, Yusheng Tan, Yebang |
description | By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe
3
O
4
@PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe
3
O
4
@PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe
3
O
4
nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation. |
doi_str_mv | 10.1007/s10853-018-2681-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259625257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550220711</galeid><sourcerecordid>A550220711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVJoJttf0Bvgp4CcSrJki33FkLaBgItSXoWsj32KsjSRpKT3R7y26PUhZBD0WHg6X0azTyEPlFySgmpv0RKpCgLQmXBKkmL3Tu0oqIuCy5JeYBWhDBWMF7R9-goxjtCiKgZXaGnXxAm0K2FExx8O8eEtevxpEcHyXR4s--DH8HiFnQfv-JHnSDgrG0tJJxg2lqdjBtx3Lu0gWjiX35Oxpo_-cY7PPiAN6Af9niCpC3OWsQBJv-g7Qd0OGgb4eO_uka_v13cnv8orn5-vzw_uyo6zqqUR-qk6KWkXFYNgOacAxA-tFDLVrIOKJOd5kxUDaVDzfq2roRuWFP2rQRWlWv0eXl3G_z9DDGpOz8Hl1sqxkRTMcHystbodHGN2oIybvAp6C6fHibTeQeDyfqZEHmZpKY0A8dvgOxJsEujnmNUlzfXb7108XbBxxhgUNtgJh32ihL1kqFaMlQ5Q_WSodplhi1MzF43Qnj99v-hZ0sXoC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259625257</pqid></control><display><type>article</type><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><source>Springer Link</source><creator>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</creator><creatorcontrib>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</creatorcontrib><description>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe
3
O
4
@PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe
3
O
4
@PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe
3
O
4
nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2681-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Adsorbents ; Adsorption ; Beads ; Characterization and Evaluation of Materials ; Chelation ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystallography and Scattering Methods ; Droplets ; Fatigue strength ; Gelation ; Heavy metals ; Hydrogels ; Iron oxides ; Magnetic permeability ; Magnetic separation ; Mass transfer ; Materials Science ; Metal ions ; Organic chemistry ; Polymer Sciences ; Polymerization ; Solid Mechanics ; Surface tension ; Water drops</subject><ispartof>Journal of materials science, 2018-11, Vol.53 (21), p.15009-15024</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</citedby><cites>FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</cites><orcidid>0000-0003-1804-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jing, Shiyao</creatorcontrib><creatorcontrib>Hou, Zhaosheng</creatorcontrib><creatorcontrib>Liu, Yingying</creatorcontrib><creatorcontrib>Qiu, Xiumin</creatorcontrib><creatorcontrib>Liu, Yusheng</creatorcontrib><creatorcontrib>Tan, Yebang</creatorcontrib><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe
3
O
4
@PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe
3
O
4
@PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe
3
O
4
nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</description><subject>Activation energy</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Beads</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chelation</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Droplets</subject><subject>Fatigue strength</subject><subject>Gelation</subject><subject>Heavy metals</subject><subject>Hydrogels</subject><subject>Iron oxides</subject><subject>Magnetic permeability</subject><subject>Magnetic separation</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Solid Mechanics</subject><subject>Surface tension</subject><subject>Water drops</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr3DAQhUVJoJttf0Bvgp4CcSrJki33FkLaBgItSXoWsj32KsjSRpKT3R7y26PUhZBD0WHg6X0azTyEPlFySgmpv0RKpCgLQmXBKkmL3Tu0oqIuCy5JeYBWhDBWMF7R9-goxjtCiKgZXaGnXxAm0K2FExx8O8eEtevxpEcHyXR4s--DH8HiFnQfv-JHnSDgrG0tJJxg2lqdjBtx3Lu0gWjiX35Oxpo_-cY7PPiAN6Af9niCpC3OWsQBJv-g7Qd0OGgb4eO_uka_v13cnv8orn5-vzw_uyo6zqqUR-qk6KWkXFYNgOacAxA-tFDLVrIOKJOd5kxUDaVDzfq2roRuWFP2rQRWlWv0eXl3G_z9DDGpOz8Hl1sqxkRTMcHystbodHGN2oIybvAp6C6fHibTeQeDyfqZEHmZpKY0A8dvgOxJsEujnmNUlzfXb7108XbBxxhgUNtgJh32ihL1kqFaMlQ5Q_WSodplhi1MzF43Qnj99v-hZ0sXoC0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wang, Xin</creator><creator>Jing, Shiyao</creator><creator>Hou, Zhaosheng</creator><creator>Liu, Yingying</creator><creator>Qiu, Xiumin</creator><creator>Liu, Yusheng</creator><creator>Tan, Yebang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1804-5592</orcidid></search><sort><creationdate>20181101</creationdate><title>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</title><author>Wang, Xin ; Jing, Shiyao ; Hou, Zhaosheng ; Liu, Yingying ; Qiu, Xiumin ; Liu, Yusheng ; Tan, Yebang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Beads</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chelation</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Droplets</topic><topic>Fatigue strength</topic><topic>Gelation</topic><topic>Heavy metals</topic><topic>Hydrogels</topic><topic>Iron oxides</topic><topic>Magnetic permeability</topic><topic>Magnetic separation</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Solid Mechanics</topic><topic>Surface tension</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jing, Shiyao</creatorcontrib><creatorcontrib>Hou, Zhaosheng</creatorcontrib><creatorcontrib>Liu, Yingying</creatorcontrib><creatorcontrib>Qiu, Xiumin</creatorcontrib><creatorcontrib>Liu, Yusheng</creatorcontrib><creatorcontrib>Tan, Yebang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Jing, Shiyao</au><au>Hou, Zhaosheng</au><au>Liu, Yingying</au><au>Qiu, Xiumin</au><au>Liu, Yusheng</au><au>Tan, Yebang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>53</volume><issue>21</issue><spage>15009</spage><epage>15024</epage><pages>15009-15024</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>By comprehensively utilizing interfacial tension and ultrafast radical polymerization as driving forces, we reported here a water droplet templating polymerization strategy to synthesize dithiocarbamate-decorated poly(vinyl amine) hydrogel beads (DTC-Fe
3
O
4
@PVAM) adsorbent material for heavy metal ions removal. The polymerization-induced rapid gelation behavior, being monitored by optical tracer microrheology, was achieved by using reactive monomers and low activation energy initiator. With this method, the monodisperse and size-controlled millimeter-scale DTC-Fe
3
O
4
@PVAM beads could be produced in mass. Different from traditional interfacially cross-linked hydrogel beads, the homogeneous polymeric network skeleton containing stable C–N cross-linkages was generated, which could withstand harsh chemical conditions and showed good fatigue resistance. Furthermore, the formed highly permeable macroporous structure is beneficial for mass transfer process and contributes to rapid adsorption equilibriums. Owing to the introduction of chelating DTC groups and Fe
3
O
4
nanofillers, the reported adsorbent material also exhibits considerable adsorption capacities, good foreign ions resistance, convenient magnetic separation and efficient reusability. This work might contribute to the improved design and novel preparation strategy of millimeter-scale hydrogel beads adsorbent materials for water environment remediation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2681-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1804-5592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018-11, Vol.53 (21), p.15009-15024 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259625257 |
source | Springer Link |
subjects | Activation energy Adsorbents Adsorption Beads Characterization and Evaluation of Materials Chelation Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Crosslinking Crystallography and Scattering Methods Droplets Fatigue strength Gelation Heavy metals Hydrogels Iron oxides Magnetic permeability Magnetic separation Mass transfer Materials Science Metal ions Organic chemistry Polymer Sciences Polymerization Solid Mechanics Surface tension Water drops |
title | Permeable, robust and magnetic hydrogel beads: water droplet templating synthesis and utilization for heavy metal ions removal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeable,%20robust%20and%20magnetic%20hydrogel%20beads:%20water%20droplet%20templating%20synthesis%20and%20utilization%20for%20heavy%20metal%20ions%20removal&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Xin&rft.date=2018-11-01&rft.volume=53&rft.issue=21&rft.spage=15009&rft.epage=15024&rft.pages=15009-15024&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2681-x&rft_dat=%3Cgale_proqu%3EA550220711%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-26c85d8814869eea444ee04fbe78b82ce128ca4256911f72db765a9293db8e263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259625257&rft_id=info:pmid/&rft_galeid=A550220711&rfr_iscdi=true |