Loading…
Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification
To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic sol...
Saved in:
Published in: | Journal of materials science 2019, Vol.54 (1), p.252-264 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3 |
container_end_page | 264 |
container_issue | 1 |
container_start_page | 252 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Cheng, Meng-meng Huang, Lin-jun Wang, Yan-xin Zhao, Yun-chao Tang, Jian-guo Wang, Yao Zhang, Yang Hedayati, Mohammadhasan Kipper, Matt J. Wickramasinghe, S. Ranil |
description | To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m
−2
h
−1
bar
−1
and 85.03% (GO), 188.89 L m
−2
h
−1
bar
−1
and 95.43% (GO/PAM), 85.85 L m
−2
h
−1
bar
−1
and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification. |
doi_str_mv | 10.1007/s10853-018-2828-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259630621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558411780</galeid><sourcerecordid>A558411780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpoNNJfkB3gq66cEYPW5aXIbRpIBBomrW4Y105CmPJlTxt_O-r1IWSRYMWQofv6D4OIR84O-eMtbvMmW5kxbiuhBa66t6QDW9aWdWaybdkw5gQlagVf0fe5_zIGGtawTfk590S5gfMPtPo6JBgesCAND55i7spHhbo03KAsTxpH8cpZj8jHXHcJwiYqYuJxjRA8D21C-bdL5gx0YwTJJh9DNQHumrTMXnn-z_qKTlxcMh49vfekvsvn79ffq1ubq-uLy9uqr5u1FzJBqQD11pWW62VAI0OuWAW-7aMyXinreZ2X0NnnQSpXKdYzfa1hk4pRLklH9d_pxR_HDHP5jEeUygljRBNpyRTgr9KlWpCCqmaQp2v1AAHND64OCfoy7E4-j4GdL7oF02ja87bsvYt-fTCUJgZn-YBjjmb67tvL1m-sn2KOSd0Zkp-hLQYzsxzwmZN2JSEzXPCpisesXpyYcOA6V_b_zf9BjJEqXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259630621</pqid></control><display><type>article</type><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><source>Springer Link</source><creator>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</creator><creatorcontrib>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</creatorcontrib><description>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m
−2
h
−1
bar
−1
and 85.03% (GO), 188.89 L m
−2
h
−1
bar
−1
and 95.43% (GO/PAM), 85.85 L m
−2
h
−1
bar
−1
and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2828-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Aqueous solutions ; Atomic force microscopy ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Contact angle ; Crystallography and Scattering Methods ; Desalination ; Fourier transforms ; Graphene ; Graphite ; Interlayers ; Materials Science ; Membranes ; Microscopy ; Nanofiltration ; Photoelectrons ; Polymer Sciences ; Rhodamine ; Scanning electron microscopy ; Separation ; Solid Mechanics ; Spectroscopy ; Spectrum analysis ; Thermogravimetric analysis ; Transmission electron microscopy ; Vacuum filtration ; Water purification ; Water resources ; X-ray diffraction</subject><ispartof>Journal of materials science, 2019, Vol.54 (1), p.252-264</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science & Business Media 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</citedby><cites>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</cites><orcidid>0000-0002-8818-745X ; 0000-0002-4098-138X ; 0000-0003-0749-5504 ; 0000-0003-4814-8285 ; 0000-0002-4296-9579 ; 0000-0003-3664-9744 ; 0000-0003-1606-2030 ; 0000-0001-8497-124X ; 0000-0001-7436-0517 ; 0000-0001-9494-7091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Meng-meng</creatorcontrib><creatorcontrib>Huang, Lin-jun</creatorcontrib><creatorcontrib>Wang, Yan-xin</creatorcontrib><creatorcontrib>Zhao, Yun-chao</creatorcontrib><creatorcontrib>Tang, Jian-guo</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Hedayati, Mohammadhasan</creatorcontrib><creatorcontrib>Kipper, Matt J.</creatorcontrib><creatorcontrib>Wickramasinghe, S. Ranil</creatorcontrib><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m
−2
h
−1
bar
−1
and 85.03% (GO), 188.89 L m
−2
h
−1
bar
−1
and 95.43% (GO/PAM), 85.85 L m
−2
h
−1
bar
−1
and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</description><subject>Analysis</subject><subject>Aqueous solutions</subject><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Contact angle</subject><subject>Crystallography and Scattering Methods</subject><subject>Desalination</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Nanofiltration</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Rhodamine</subject><subject>Scanning electron microscopy</subject><subject>Separation</subject><subject>Solid Mechanics</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>Vacuum filtration</subject><subject>Water purification</subject><subject>Water resources</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhUVpoNNJfkB3gq66cEYPW5aXIbRpIBBomrW4Y105CmPJlTxt_O-r1IWSRYMWQofv6D4OIR84O-eMtbvMmW5kxbiuhBa66t6QDW9aWdWaybdkw5gQlagVf0fe5_zIGGtawTfk590S5gfMPtPo6JBgesCAND55i7spHhbo03KAsTxpH8cpZj8jHXHcJwiYqYuJxjRA8D21C-bdL5gx0YwTJJh9DNQHumrTMXnn-z_qKTlxcMh49vfekvsvn79ffq1ubq-uLy9uqr5u1FzJBqQD11pWW62VAI0OuWAW-7aMyXinreZ2X0NnnQSpXKdYzfa1hk4pRLklH9d_pxR_HDHP5jEeUygljRBNpyRTgr9KlWpCCqmaQp2v1AAHND64OCfoy7E4-j4GdL7oF02ja87bsvYt-fTCUJgZn-YBjjmb67tvL1m-sn2KOSd0Zkp-hLQYzsxzwmZN2JSEzXPCpisesXpyYcOA6V_b_zf9BjJEqXo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheng, Meng-meng</creator><creator>Huang, Lin-jun</creator><creator>Wang, Yan-xin</creator><creator>Zhao, Yun-chao</creator><creator>Tang, Jian-guo</creator><creator>Wang, Yao</creator><creator>Zhang, Yang</creator><creator>Hedayati, Mohammadhasan</creator><creator>Kipper, Matt J.</creator><creator>Wickramasinghe, S. Ranil</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8818-745X</orcidid><orcidid>https://orcid.org/0000-0002-4098-138X</orcidid><orcidid>https://orcid.org/0000-0003-0749-5504</orcidid><orcidid>https://orcid.org/0000-0003-4814-8285</orcidid><orcidid>https://orcid.org/0000-0002-4296-9579</orcidid><orcidid>https://orcid.org/0000-0003-3664-9744</orcidid><orcidid>https://orcid.org/0000-0003-1606-2030</orcidid><orcidid>https://orcid.org/0000-0001-8497-124X</orcidid><orcidid>https://orcid.org/0000-0001-7436-0517</orcidid><orcidid>https://orcid.org/0000-0001-9494-7091</orcidid></search><sort><creationdate>2019</creationdate><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><author>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Aqueous solutions</topic><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Contact angle</topic><topic>Crystallography and Scattering Methods</topic><topic>Desalination</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Nanofiltration</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Rhodamine</topic><topic>Scanning electron microscopy</topic><topic>Separation</topic><topic>Solid Mechanics</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>Vacuum filtration</topic><topic>Water purification</topic><topic>Water resources</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Meng-meng</creatorcontrib><creatorcontrib>Huang, Lin-jun</creatorcontrib><creatorcontrib>Wang, Yan-xin</creatorcontrib><creatorcontrib>Zhao, Yun-chao</creatorcontrib><creatorcontrib>Tang, Jian-guo</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Hedayati, Mohammadhasan</creatorcontrib><creatorcontrib>Kipper, Matt J.</creatorcontrib><creatorcontrib>Wickramasinghe, S. Ranil</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Meng-meng</au><au>Huang, Lin-jun</au><au>Wang, Yan-xin</au><au>Zhao, Yun-chao</au><au>Tang, Jian-guo</au><au>Wang, Yao</au><au>Zhang, Yang</au><au>Hedayati, Mohammadhasan</au><au>Kipper, Matt J.</au><au>Wickramasinghe, S. Ranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>252</spage><epage>264</epage><pages>252-264</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m
−2
h
−1
bar
−1
and 85.03% (GO), 188.89 L m
−2
h
−1
bar
−1
and 95.43% (GO/PAM), 85.85 L m
−2
h
−1
bar
−1
and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2828-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8818-745X</orcidid><orcidid>https://orcid.org/0000-0002-4098-138X</orcidid><orcidid>https://orcid.org/0000-0003-0749-5504</orcidid><orcidid>https://orcid.org/0000-0003-4814-8285</orcidid><orcidid>https://orcid.org/0000-0002-4296-9579</orcidid><orcidid>https://orcid.org/0000-0003-3664-9744</orcidid><orcidid>https://orcid.org/0000-0003-1606-2030</orcidid><orcidid>https://orcid.org/0000-0001-8497-124X</orcidid><orcidid>https://orcid.org/0000-0001-7436-0517</orcidid><orcidid>https://orcid.org/0000-0001-9494-7091</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019, Vol.54 (1), p.252-264 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259630621 |
source | Springer Link |
subjects | Analysis Aqueous solutions Atomic force microscopy Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Contact angle Crystallography and Scattering Methods Desalination Fourier transforms Graphene Graphite Interlayers Materials Science Membranes Microscopy Nanofiltration Photoelectrons Polymer Sciences Rhodamine Scanning electron microscopy Separation Solid Mechanics Spectroscopy Spectrum analysis Thermogravimetric analysis Transmission electron microscopy Vacuum filtration Water purification Water resources X-ray diffraction |
title | Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20graphene%20oxide/polyacrylamide%20composite%20membranes%20for%20organic%20dyes/water%20separation%20in%20water%20purification&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cheng,%20Meng-meng&rft.date=2019&rft.volume=54&rft.issue=1&rft.spage=252&rft.epage=264&rft.pages=252-264&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2828-9&rft_dat=%3Cgale_proqu%3EA558411780%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259630621&rft_id=info:pmid/&rft_galeid=A558411780&rfr_iscdi=true |