Loading…

Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification

To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic sol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2019, Vol.54 (1), p.252-264
Main Authors: Cheng, Meng-meng, Huang, Lin-jun, Wang, Yan-xin, Zhao, Yun-chao, Tang, Jian-guo, Wang, Yao, Zhang, Yang, Hedayati, Mohammadhasan, Kipper, Matt J., Wickramasinghe, S. Ranil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3
cites cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3
container_end_page 264
container_issue 1
container_start_page 252
container_title Journal of materials science
container_volume 54
creator Cheng, Meng-meng
Huang, Lin-jun
Wang, Yan-xin
Zhao, Yun-chao
Tang, Jian-guo
Wang, Yao
Zhang, Yang
Hedayati, Mohammadhasan
Kipper, Matt J.
Wickramasinghe, S. Ranil
description To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m −2  h −1  bar −1 and 85.03% (GO), 188.89 L m −2  h −1  bar −1 and 95.43% (GO/PAM), 85.85 L m −2  h −1  bar −1 and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.
doi_str_mv 10.1007/s10853-018-2828-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259630621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558411780</galeid><sourcerecordid>A558411780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpoNNJfkB3gq66cEYPW5aXIbRpIBBomrW4Y105CmPJlTxt_O-r1IWSRYMWQofv6D4OIR84O-eMtbvMmW5kxbiuhBa66t6QDW9aWdWaybdkw5gQlagVf0fe5_zIGGtawTfk590S5gfMPtPo6JBgesCAND55i7spHhbo03KAsTxpH8cpZj8jHXHcJwiYqYuJxjRA8D21C-bdL5gx0YwTJJh9DNQHumrTMXnn-z_qKTlxcMh49vfekvsvn79ffq1ubq-uLy9uqr5u1FzJBqQD11pWW62VAI0OuWAW-7aMyXinreZ2X0NnnQSpXKdYzfa1hk4pRLklH9d_pxR_HDHP5jEeUygljRBNpyRTgr9KlWpCCqmaQp2v1AAHND64OCfoy7E4-j4GdL7oF02ja87bsvYt-fTCUJgZn-YBjjmb67tvL1m-sn2KOSd0Zkp-hLQYzsxzwmZN2JSEzXPCpisesXpyYcOA6V_b_zf9BjJEqXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259630621</pqid></control><display><type>article</type><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><source>Springer Link</source><creator>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</creator><creatorcontrib>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</creatorcontrib><description>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m −2  h −1  bar −1 and 85.03% (GO), 188.89 L m −2  h −1  bar −1 and 95.43% (GO/PAM), 85.85 L m −2  h −1  bar −1 and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2828-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Aqueous solutions ; Atomic force microscopy ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Contact angle ; Crystallography and Scattering Methods ; Desalination ; Fourier transforms ; Graphene ; Graphite ; Interlayers ; Materials Science ; Membranes ; Microscopy ; Nanofiltration ; Photoelectrons ; Polymer Sciences ; Rhodamine ; Scanning electron microscopy ; Separation ; Solid Mechanics ; Spectroscopy ; Spectrum analysis ; Thermogravimetric analysis ; Transmission electron microscopy ; Vacuum filtration ; Water purification ; Water resources ; X-ray diffraction</subject><ispartof>Journal of materials science, 2019, Vol.54 (1), p.252-264</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</citedby><cites>FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</cites><orcidid>0000-0002-8818-745X ; 0000-0002-4098-138X ; 0000-0003-0749-5504 ; 0000-0003-4814-8285 ; 0000-0002-4296-9579 ; 0000-0003-3664-9744 ; 0000-0003-1606-2030 ; 0000-0001-8497-124X ; 0000-0001-7436-0517 ; 0000-0001-9494-7091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Meng-meng</creatorcontrib><creatorcontrib>Huang, Lin-jun</creatorcontrib><creatorcontrib>Wang, Yan-xin</creatorcontrib><creatorcontrib>Zhao, Yun-chao</creatorcontrib><creatorcontrib>Tang, Jian-guo</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Hedayati, Mohammadhasan</creatorcontrib><creatorcontrib>Kipper, Matt J.</creatorcontrib><creatorcontrib>Wickramasinghe, S. Ranil</creatorcontrib><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m −2  h −1  bar −1 and 85.03% (GO), 188.89 L m −2  h −1  bar −1 and 95.43% (GO/PAM), 85.85 L m −2  h −1  bar −1 and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</description><subject>Analysis</subject><subject>Aqueous solutions</subject><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Contact angle</subject><subject>Crystallography and Scattering Methods</subject><subject>Desalination</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Nanofiltration</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Rhodamine</subject><subject>Scanning electron microscopy</subject><subject>Separation</subject><subject>Solid Mechanics</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>Vacuum filtration</subject><subject>Water purification</subject><subject>Water resources</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhUVpoNNJfkB3gq66cEYPW5aXIbRpIBBomrW4Y105CmPJlTxt_O-r1IWSRYMWQofv6D4OIR84O-eMtbvMmW5kxbiuhBa66t6QDW9aWdWaybdkw5gQlagVf0fe5_zIGGtawTfk590S5gfMPtPo6JBgesCAND55i7spHhbo03KAsTxpH8cpZj8jHXHcJwiYqYuJxjRA8D21C-bdL5gx0YwTJJh9DNQHumrTMXnn-z_qKTlxcMh49vfekvsvn79ffq1ubq-uLy9uqr5u1FzJBqQD11pWW62VAI0OuWAW-7aMyXinreZ2X0NnnQSpXKdYzfa1hk4pRLklH9d_pxR_HDHP5jEeUygljRBNpyRTgr9KlWpCCqmaQp2v1AAHND64OCfoy7E4-j4GdL7oF02ja87bsvYt-fTCUJgZn-YBjjmb67tvL1m-sn2KOSd0Zkp-hLQYzsxzwmZN2JSEzXPCpisesXpyYcOA6V_b_zf9BjJEqXo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheng, Meng-meng</creator><creator>Huang, Lin-jun</creator><creator>Wang, Yan-xin</creator><creator>Zhao, Yun-chao</creator><creator>Tang, Jian-guo</creator><creator>Wang, Yao</creator><creator>Zhang, Yang</creator><creator>Hedayati, Mohammadhasan</creator><creator>Kipper, Matt J.</creator><creator>Wickramasinghe, S. Ranil</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8818-745X</orcidid><orcidid>https://orcid.org/0000-0002-4098-138X</orcidid><orcidid>https://orcid.org/0000-0003-0749-5504</orcidid><orcidid>https://orcid.org/0000-0003-4814-8285</orcidid><orcidid>https://orcid.org/0000-0002-4296-9579</orcidid><orcidid>https://orcid.org/0000-0003-3664-9744</orcidid><orcidid>https://orcid.org/0000-0003-1606-2030</orcidid><orcidid>https://orcid.org/0000-0001-8497-124X</orcidid><orcidid>https://orcid.org/0000-0001-7436-0517</orcidid><orcidid>https://orcid.org/0000-0001-9494-7091</orcidid></search><sort><creationdate>2019</creationdate><title>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</title><author>Cheng, Meng-meng ; Huang, Lin-jun ; Wang, Yan-xin ; Zhao, Yun-chao ; Tang, Jian-guo ; Wang, Yao ; Zhang, Yang ; Hedayati, Mohammadhasan ; Kipper, Matt J. ; Wickramasinghe, S. Ranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Aqueous solutions</topic><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Contact angle</topic><topic>Crystallography and Scattering Methods</topic><topic>Desalination</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Nanofiltration</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Rhodamine</topic><topic>Scanning electron microscopy</topic><topic>Separation</topic><topic>Solid Mechanics</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>Vacuum filtration</topic><topic>Water purification</topic><topic>Water resources</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Meng-meng</creatorcontrib><creatorcontrib>Huang, Lin-jun</creatorcontrib><creatorcontrib>Wang, Yan-xin</creatorcontrib><creatorcontrib>Zhao, Yun-chao</creatorcontrib><creatorcontrib>Tang, Jian-guo</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Hedayati, Mohammadhasan</creatorcontrib><creatorcontrib>Kipper, Matt J.</creatorcontrib><creatorcontrib>Wickramasinghe, S. Ranil</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Meng-meng</au><au>Huang, Lin-jun</au><au>Wang, Yan-xin</au><au>Zhao, Yun-chao</au><au>Tang, Jian-guo</au><au>Wang, Yao</au><au>Zhang, Yang</au><au>Hedayati, Mohammadhasan</au><au>Kipper, Matt J.</au><au>Wickramasinghe, S. Ranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019</date><risdate>2019</risdate><volume>54</volume><issue>1</issue><spage>252</spage><epage>264</epage><pages>252-264</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85 nm), GO/PAM membrane (0.68 nm) and rGO membrane (0.36 nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04 L m −2  h −1  bar −1 and 85.03% (GO), 188.89 L m −2  h −1  bar −1 and 95.43% (GO/PAM), 85.85 L m −2  h −1  bar −1 and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2828-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8818-745X</orcidid><orcidid>https://orcid.org/0000-0002-4098-138X</orcidid><orcidid>https://orcid.org/0000-0003-0749-5504</orcidid><orcidid>https://orcid.org/0000-0003-4814-8285</orcidid><orcidid>https://orcid.org/0000-0002-4296-9579</orcidid><orcidid>https://orcid.org/0000-0003-3664-9744</orcidid><orcidid>https://orcid.org/0000-0003-1606-2030</orcidid><orcidid>https://orcid.org/0000-0001-8497-124X</orcidid><orcidid>https://orcid.org/0000-0001-7436-0517</orcidid><orcidid>https://orcid.org/0000-0001-9494-7091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019, Vol.54 (1), p.252-264
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259630621
source Springer Link
subjects Analysis
Aqueous solutions
Atomic force microscopy
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Contact angle
Crystallography and Scattering Methods
Desalination
Fourier transforms
Graphene
Graphite
Interlayers
Materials Science
Membranes
Microscopy
Nanofiltration
Photoelectrons
Polymer Sciences
Rhodamine
Scanning electron microscopy
Separation
Solid Mechanics
Spectroscopy
Spectrum analysis
Thermogravimetric analysis
Transmission electron microscopy
Vacuum filtration
Water purification
Water resources
X-ray diffraction
title Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20graphene%20oxide/polyacrylamide%20composite%20membranes%20for%20organic%20dyes/water%20separation%20in%20water%20purification&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cheng,%20Meng-meng&rft.date=2019&rft.volume=54&rft.issue=1&rft.spage=252&rft.epage=264&rft.pages=252-264&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2828-9&rft_dat=%3Cgale_proqu%3EA558411780%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-35a3faf7d04d8862a8efe120dec72820198d81db4a9df3a36f96040b48a966ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259630621&rft_id=info:pmid/&rft_galeid=A558411780&rfr_iscdi=true