Loading…
Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering
Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the p...
Saved in:
Published in: | Journal of materials science 2017-07, Vol.52 (14), p.8618-8629 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper analyses the effect of 0.5 and 1% of carbon nanotubes (CNTs) addition on the mechanical and microstructural behavior of Al-based metal matrix composites produced via SPS. The results show that the carbon nanotubes addition results in an increase in porosity and an increase in strength with respect to pure SPSed aluminum. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-017-1086-6 |