Loading…

TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors

Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2017-07, Vol.52 (13), p.7733-7743
Main Authors: Li, Ting, Wu, Yunlong, Wang, Qiufan, Zhang, Daohong, Zhang, Aiqing, Miao, Menghe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33
cites cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33
container_end_page 7743
container_issue 13
container_start_page 7733
container_title Journal of materials science
container_volume 52
creator Li, Ting
Wu, Yunlong
Wang, Qiufan
Zhang, Daohong
Zhang, Aiqing
Miao, Menghe
description Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO 2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO 2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg −1 and a maximum power density of 2060 W kg −1 . The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.
doi_str_mv 10.1007/s10853-017-1033-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259641310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259641310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz3EnSdtkj7L4BYt7Wc8hO021S79MUqT_3mgFT55mGN7nHXgIueZwywHUKnDQuWTAFeMgJStOyILnSrJMgzwlCwAhmMgKfk4uQjgCQK4EX5BuX-8ERT-FaJum7hwN0Y8YR--o7UrqGofR9_ju2hptQwfnq963tkNH647Gz54NzUQn6zu6edmvfupsmNrWRV8jDWMi0A4W69j7cEnOKtsEd_U7l-T14X6_eWLb3ePz5m7LUOYysgKrvKxUoUGjyjmKfG1tqbXQlUtH5GsppAaXCzwAP6RNK5m5UqACiQcpl-Rm7h18_zG6EM2xH32XXhqRyoqMy6RpSficQt-H4F1lBl-31k-Gg_nWamatJmk131pNkRgxMyFluzfn_5r_h74AXjB7ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259641310</pqid></control><display><type>article</type><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><source>Springer Nature</source><creator>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</creator><creatorcontrib>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</creatorcontrib><description>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO 2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO 2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg −1 and a maximum power density of 2060 W kg −1 . The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1033-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Annealing ; Asymmetry ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Electrochemical analysis ; Energy Materials ; Energy storage ; Filaments ; Flux density ; Materials Science ; Maximum power density ; Polymer Sciences ; Rutile ; Solid Mechanics ; Supercapacitors ; Surface layers ; Textiles ; Titanium ; Titanium dioxide ; Yarn ; Yarns</subject><ispartof>Journal of materials science, 2017-07, Vol.52 (13), p.7733-7743</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</citedby><cites>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wu, Yunlong</creatorcontrib><creatorcontrib>Wang, Qiufan</creatorcontrib><creatorcontrib>Zhang, Daohong</creatorcontrib><creatorcontrib>Zhang, Aiqing</creatorcontrib><creatorcontrib>Miao, Menghe</creatorcontrib><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO 2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO 2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg −1 and a maximum power density of 2060 W kg −1 . The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>Filaments</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Maximum power density</subject><subject>Polymer Sciences</subject><subject>Rutile</subject><subject>Solid Mechanics</subject><subject>Supercapacitors</subject><subject>Surface layers</subject><subject>Textiles</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Yarn</subject><subject>Yarns</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz3EnSdtkj7L4BYt7Wc8hO021S79MUqT_3mgFT55mGN7nHXgIueZwywHUKnDQuWTAFeMgJStOyILnSrJMgzwlCwAhmMgKfk4uQjgCQK4EX5BuX-8ERT-FaJum7hwN0Y8YR--o7UrqGofR9_ju2hptQwfnq963tkNH647Gz54NzUQn6zu6edmvfupsmNrWRV8jDWMi0A4W69j7cEnOKtsEd_U7l-T14X6_eWLb3ePz5m7LUOYysgKrvKxUoUGjyjmKfG1tqbXQlUtH5GsppAaXCzwAP6RNK5m5UqACiQcpl-Rm7h18_zG6EM2xH32XXhqRyoqMy6RpSficQt-H4F1lBl-31k-Gg_nWamatJmk131pNkRgxMyFluzfn_5r_h74AXjB7ZA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Li, Ting</creator><creator>Wu, Yunlong</creator><creator>Wang, Qiufan</creator><creator>Zhang, Daohong</creator><creator>Zhang, Aiqing</creator><creator>Miao, Menghe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><author>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>Filaments</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Maximum power density</topic><topic>Polymer Sciences</topic><topic>Rutile</topic><topic>Solid Mechanics</topic><topic>Supercapacitors</topic><topic>Surface layers</topic><topic>Textiles</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Yarn</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wu, Yunlong</creatorcontrib><creatorcontrib>Wang, Qiufan</creatorcontrib><creatorcontrib>Zhang, Daohong</creatorcontrib><creatorcontrib>Zhang, Aiqing</creatorcontrib><creatorcontrib>Miao, Menghe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ting</au><au>Wu, Yunlong</au><au>Wang, Qiufan</au><au>Zhang, Daohong</au><au>Zhang, Aiqing</au><au>Miao, Menghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>52</volume><issue>13</issue><spage>7733</spage><epage>7743</epage><pages>7733-7743</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO 2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO 2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg −1 and a maximum power density of 2060 W kg −1 . The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1033-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-07, Vol.52 (13), p.7733-7743
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259641310
source Springer Nature
subjects Anatase
Annealing
Asymmetry
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystal structure
Crystallinity
Crystallography and Scattering Methods
Electrochemical analysis
Energy Materials
Energy storage
Filaments
Flux density
Materials Science
Maximum power density
Polymer Sciences
Rutile
Solid Mechanics
Supercapacitors
Surface layers
Textiles
Titanium
Titanium dioxide
Yarn
Yarns
title TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20crystalline%20structure%20and%20electrochemical%20performance%20in%20two-ply%20yarn%20CNT/TiO2%20asymmetric%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Ting&rft.date=2017-07-01&rft.volume=52&rft.issue=13&rft.spage=7733&rft.epage=7743&rft.pages=7733-7743&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1033-6&rft_dat=%3Cproquest_cross%3E2259641310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259641310&rft_id=info:pmid/&rfr_iscdi=true