Loading…
TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors
Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO 2...
Saved in:
Published in: | Journal of materials science 2017-07, Vol.52 (13), p.7733-7743 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33 |
container_end_page | 7743 |
container_issue | 13 |
container_start_page | 7733 |
container_title | Journal of materials science |
container_volume | 52 |
creator | Li, Ting Wu, Yunlong Wang, Qiufan Zhang, Daohong Zhang, Aiqing Miao, Menghe |
description | Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO
2
surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO
2
surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO
2
surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg
−1
and a maximum power density of 2060 W kg
−1
. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states. |
doi_str_mv | 10.1007/s10853-017-1033-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259641310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259641310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz3EnSdtkj7L4BYt7Wc8hO021S79MUqT_3mgFT55mGN7nHXgIueZwywHUKnDQuWTAFeMgJStOyILnSrJMgzwlCwAhmMgKfk4uQjgCQK4EX5BuX-8ERT-FaJum7hwN0Y8YR--o7UrqGofR9_ju2hptQwfnq963tkNH647Gz54NzUQn6zu6edmvfupsmNrWRV8jDWMi0A4W69j7cEnOKtsEd_U7l-T14X6_eWLb3ePz5m7LUOYysgKrvKxUoUGjyjmKfG1tqbXQlUtH5GsppAaXCzwAP6RNK5m5UqACiQcpl-Rm7h18_zG6EM2xH32XXhqRyoqMy6RpSficQt-H4F1lBl-31k-Gg_nWamatJmk131pNkRgxMyFluzfn_5r_h74AXjB7ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259641310</pqid></control><display><type>article</type><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><source>Springer Nature</source><creator>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</creator><creatorcontrib>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</creatorcontrib><description>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO
2
surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO
2
surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO
2
surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg
−1
and a maximum power density of 2060 W kg
−1
. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1033-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Annealing ; Asymmetry ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Electrochemical analysis ; Energy Materials ; Energy storage ; Filaments ; Flux density ; Materials Science ; Maximum power density ; Polymer Sciences ; Rutile ; Solid Mechanics ; Supercapacitors ; Surface layers ; Textiles ; Titanium ; Titanium dioxide ; Yarn ; Yarns</subject><ispartof>Journal of materials science, 2017-07, Vol.52 (13), p.7733-7743</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</citedby><cites>FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wu, Yunlong</creatorcontrib><creatorcontrib>Wang, Qiufan</creatorcontrib><creatorcontrib>Zhang, Daohong</creatorcontrib><creatorcontrib>Zhang, Aiqing</creatorcontrib><creatorcontrib>Miao, Menghe</creatorcontrib><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO
2
surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO
2
surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO
2
surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg
−1
and a maximum power density of 2060 W kg
−1
. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Asymmetry</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>Energy Materials</subject><subject>Energy storage</subject><subject>Filaments</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Maximum power density</subject><subject>Polymer Sciences</subject><subject>Rutile</subject><subject>Solid Mechanics</subject><subject>Supercapacitors</subject><subject>Surface layers</subject><subject>Textiles</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Yarn</subject><subject>Yarns</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz3EnSdtkj7L4BYt7Wc8hO021S79MUqT_3mgFT55mGN7nHXgIueZwywHUKnDQuWTAFeMgJStOyILnSrJMgzwlCwAhmMgKfk4uQjgCQK4EX5BuX-8ERT-FaJum7hwN0Y8YR--o7UrqGofR9_ju2hptQwfnq963tkNH647Gz54NzUQn6zu6edmvfupsmNrWRV8jDWMi0A4W69j7cEnOKtsEd_U7l-T14X6_eWLb3ePz5m7LUOYysgKrvKxUoUGjyjmKfG1tqbXQlUtH5GsppAaXCzwAP6RNK5m5UqACiQcpl-Rm7h18_zG6EM2xH32XXhqRyoqMy6RpSficQt-H4F1lBl-31k-Gg_nWamatJmk131pNkRgxMyFluzfn_5r_h74AXjB7ZA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Li, Ting</creator><creator>Wu, Yunlong</creator><creator>Wang, Qiufan</creator><creator>Zhang, Daohong</creator><creator>Zhang, Aiqing</creator><creator>Miao, Menghe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</title><author>Li, Ting ; Wu, Yunlong ; Wang, Qiufan ; Zhang, Daohong ; Zhang, Aiqing ; Miao, Menghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Asymmetry</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>Energy Materials</topic><topic>Energy storage</topic><topic>Filaments</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Maximum power density</topic><topic>Polymer Sciences</topic><topic>Rutile</topic><topic>Solid Mechanics</topic><topic>Supercapacitors</topic><topic>Surface layers</topic><topic>Textiles</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Yarn</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wu, Yunlong</creatorcontrib><creatorcontrib>Wang, Qiufan</creatorcontrib><creatorcontrib>Zhang, Daohong</creatorcontrib><creatorcontrib>Zhang, Aiqing</creatorcontrib><creatorcontrib>Miao, Menghe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ting</au><au>Wu, Yunlong</au><au>Wang, Qiufan</au><au>Zhang, Daohong</au><au>Zhang, Aiqing</au><au>Miao, Menghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>52</volume><issue>13</issue><spage>7733</spage><epage>7743</epage><pages>7733-7743</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO
2
surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO
2
surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO
2
surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg
−1
and a maximum power density of 2060 W kg
−1
. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1033-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2017-07, Vol.52 (13), p.7733-7743 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259641310 |
source | Springer Nature |
subjects | Anatase Annealing Asymmetry Carbon nanotubes Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystal structure Crystallinity Crystallography and Scattering Methods Electrochemical analysis Energy Materials Energy storage Filaments Flux density Materials Science Maximum power density Polymer Sciences Rutile Solid Mechanics Supercapacitors Surface layers Textiles Titanium Titanium dioxide Yarn Yarns |
title | TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20crystalline%20structure%20and%20electrochemical%20performance%20in%20two-ply%20yarn%20CNT/TiO2%20asymmetric%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Ting&rft.date=2017-07-01&rft.volume=52&rft.issue=13&rft.spage=7733&rft.epage=7743&rft.pages=7733-7743&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1033-6&rft_dat=%3Cproquest_cross%3E2259641310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-6cf5df76808c751c259aad8828fe680c1932380e52cb01b80e8734ed2c703cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259641310&rft_id=info:pmid/&rfr_iscdi=true |