Loading…
Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures
The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both...
Saved in:
Published in: | Journal of materials science 2019-02, Vol.54 (4), p.3230-3241 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43 |
container_end_page | 3241 |
container_issue | 4 |
container_start_page | 3230 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Khan, Atif A. Herrera, M. Pizarro, J. Galindo, P. L. Carrington, P. J. Fujita, H. Krier, A. Molina, S. I. |
description | The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both regions to be differentiable and included in the same micrograph at close proximity. This limits the application of this approach to certain materials and magnifications where this requirement is fulfilled. In this work, we extend the qHAADF method to analyses where the reference region is imaged in a separate micrograph. The validity of this modified method is proved by comparison to the original qHAADF approach using HAADF-STEM simulated images of the semiconductor heterostructure InSb/InAs. Additionally, the methods are applied successfully to experimental images both of a simple InSb/InAs interface and of a complex InSb/GaSb heterostructure, justifying the significance of the modified method over the original method. |
doi_str_mv | 10.1007/s10853-018-3073-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259642443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566600627</galeid><sourcerecordid>A566600627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0P6A3Q089OBl928clbZpASqEfZyFLo43D2tqVZOj--2pxIeTQooNmhud9Gekl5D2FSwqgrzKFTvIWaNdy0Lw9vSAbKmshOuAvyQaAsZYJRV-TNzk_AoDUjG7I8Wv0YxjRN8fb7fbTTTNheYi-CTE1tsRpdI2L-2Wa2-HUrlUdTIeYxzLG2e6b42LnUi2cPQ-aGJqMVRZnv7hSXR6wYIq5pNouCfNb8irYfcZ3f-8L8uvm88_r2_b-25e76-1964SC0vY9D1IAx6Bp3XUYnBPCOd17FXrZhSAoUh-4dDhw4RmXnmFA6QcpOm0FvyAfVt9DiscFczGPcUl142wYk70STAj-X4ryjoLSuqvU5Urt7B7NOIdYknX1-PWpGMY630qlFIBiugo-PhNUpuDvsrNLzubux_fnLF1ZV78pJwzmkMbJppOhYM7hmjVcU8M153DNqWrYqsmVnXeYntb-t-gPaWCoaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259642443</pqid></control><display><type>article</type><title>Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures</title><source>Springer Nature</source><creator>Khan, Atif A. ; Herrera, M. ; Pizarro, J. ; Galindo, P. L. ; Carrington, P. J. ; Fujita, H. ; Krier, A. ; Molina, S. I.</creator><creatorcontrib>Khan, Atif A. ; Herrera, M. ; Pizarro, J. ; Galindo, P. L. ; Carrington, P. J. ; Fujita, H. ; Krier, A. ; Molina, S. I.</creatorcontrib><description>The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both regions to be differentiable and included in the same micrograph at close proximity. This limits the application of this approach to certain materials and magnifications where this requirement is fulfilled. In this work, we extend the qHAADF method to analyses where the reference region is imaged in a separate micrograph. The validity of this modified method is proved by comparison to the original qHAADF approach using HAADF-STEM simulated images of the semiconductor heterostructure InSb/InAs. Additionally, the methods are applied successfully to experimental images both of a simple InSb/InAs interface and of a complex InSb/GaSb heterostructure, justifying the significance of the modified method over the original method.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-3073-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composition ; Crystallography and Scattering Methods ; Electronic Materials ; Heterostructures ; Indium antimonide ; Indium arsenides ; Intermetallic compounds ; Materials Science ; Photomicrographs ; Polymer Sciences ; Semiconductor materials ; Solid Mechanics</subject><ispartof>Journal of materials science, 2019-02, Vol.54 (4), p.3230-3241</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science & Business Media 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43</citedby><cites>FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43</cites><orcidid>0000-0003-4098-5206 ; 0000-0001-5081-5417 ; 0000-0003-0892-8113 ; 0000-0002-2325-5941 ; 0000-0003-2107-5602 ; 0000-0002-4295-6743 ; 0000-0002-0322-5024 ; 0000-0002-5221-2852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khan, Atif A.</creatorcontrib><creatorcontrib>Herrera, M.</creatorcontrib><creatorcontrib>Pizarro, J.</creatorcontrib><creatorcontrib>Galindo, P. L.</creatorcontrib><creatorcontrib>Carrington, P. J.</creatorcontrib><creatorcontrib>Fujita, H.</creatorcontrib><creatorcontrib>Krier, A.</creatorcontrib><creatorcontrib>Molina, S. I.</creatorcontrib><title>Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both regions to be differentiable and included in the same micrograph at close proximity. This limits the application of this approach to certain materials and magnifications where this requirement is fulfilled. In this work, we extend the qHAADF method to analyses where the reference region is imaged in a separate micrograph. The validity of this modified method is proved by comparison to the original qHAADF approach using HAADF-STEM simulated images of the semiconductor heterostructure InSb/InAs. Additionally, the methods are applied successfully to experimental images both of a simple InSb/InAs interface and of a complex InSb/GaSb heterostructure, justifying the significance of the modified method over the original method.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composition</subject><subject>Crystallography and Scattering Methods</subject><subject>Electronic Materials</subject><subject>Heterostructures</subject><subject>Indium antimonide</subject><subject>Indium arsenides</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Photomicrographs</subject><subject>Polymer Sciences</subject><subject>Semiconductor materials</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVpodu0P6A3Q089OBl928clbZpASqEfZyFLo43D2tqVZOj--2pxIeTQooNmhud9Gekl5D2FSwqgrzKFTvIWaNdy0Lw9vSAbKmshOuAvyQaAsZYJRV-TNzk_AoDUjG7I8Wv0YxjRN8fb7fbTTTNheYi-CTE1tsRpdI2L-2Wa2-HUrlUdTIeYxzLG2e6b42LnUi2cPQ-aGJqMVRZnv7hSXR6wYIq5pNouCfNb8irYfcZ3f-8L8uvm88_r2_b-25e76-1964SC0vY9D1IAx6Bp3XUYnBPCOd17FXrZhSAoUh-4dDhw4RmXnmFA6QcpOm0FvyAfVt9DiscFczGPcUl142wYk70STAj-X4ryjoLSuqvU5Urt7B7NOIdYknX1-PWpGMY630qlFIBiugo-PhNUpuDvsrNLzubux_fnLF1ZV78pJwzmkMbJppOhYM7hmjVcU8M153DNqWrYqsmVnXeYntb-t-gPaWCoaQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Khan, Atif A.</creator><creator>Herrera, M.</creator><creator>Pizarro, J.</creator><creator>Galindo, P. L.</creator><creator>Carrington, P. J.</creator><creator>Fujita, H.</creator><creator>Krier, A.</creator><creator>Molina, S. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4098-5206</orcidid><orcidid>https://orcid.org/0000-0001-5081-5417</orcidid><orcidid>https://orcid.org/0000-0003-0892-8113</orcidid><orcidid>https://orcid.org/0000-0002-2325-5941</orcidid><orcidid>https://orcid.org/0000-0003-2107-5602</orcidid><orcidid>https://orcid.org/0000-0002-4295-6743</orcidid><orcidid>https://orcid.org/0000-0002-0322-5024</orcidid><orcidid>https://orcid.org/0000-0002-5221-2852</orcidid></search><sort><creationdate>20190201</creationdate><title>Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures</title><author>Khan, Atif A. ; Herrera, M. ; Pizarro, J. ; Galindo, P. L. ; Carrington, P. J. ; Fujita, H. ; Krier, A. ; Molina, S. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composition</topic><topic>Crystallography and Scattering Methods</topic><topic>Electronic Materials</topic><topic>Heterostructures</topic><topic>Indium antimonide</topic><topic>Indium arsenides</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Photomicrographs</topic><topic>Polymer Sciences</topic><topic>Semiconductor materials</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Atif A.</creatorcontrib><creatorcontrib>Herrera, M.</creatorcontrib><creatorcontrib>Pizarro, J.</creatorcontrib><creatorcontrib>Galindo, P. L.</creatorcontrib><creatorcontrib>Carrington, P. J.</creatorcontrib><creatorcontrib>Fujita, H.</creatorcontrib><creatorcontrib>Krier, A.</creatorcontrib><creatorcontrib>Molina, S. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Atif A.</au><au>Herrera, M.</au><au>Pizarro, J.</au><au>Galindo, P. L.</au><au>Carrington, P. J.</au><au>Fujita, H.</au><au>Krier, A.</au><au>Molina, S. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>54</volume><issue>4</issue><spage>3230</spage><epage>3241</epage><pages>3230-3241</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both regions to be differentiable and included in the same micrograph at close proximity. This limits the application of this approach to certain materials and magnifications where this requirement is fulfilled. In this work, we extend the qHAADF method to analyses where the reference region is imaged in a separate micrograph. The validity of this modified method is proved by comparison to the original qHAADF approach using HAADF-STEM simulated images of the semiconductor heterostructure InSb/InAs. Additionally, the methods are applied successfully to experimental images both of a simple InSb/InAs interface and of a complex InSb/GaSb heterostructure, justifying the significance of the modified method over the original method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-3073-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4098-5206</orcidid><orcidid>https://orcid.org/0000-0001-5081-5417</orcidid><orcidid>https://orcid.org/0000-0003-0892-8113</orcidid><orcidid>https://orcid.org/0000-0002-2325-5941</orcidid><orcidid>https://orcid.org/0000-0003-2107-5602</orcidid><orcidid>https://orcid.org/0000-0002-4295-6743</orcidid><orcidid>https://orcid.org/0000-0002-0322-5024</orcidid><orcidid>https://orcid.org/0000-0002-5221-2852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-02, Vol.54 (4), p.3230-3241 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259642443 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composition Crystallography and Scattering Methods Electronic Materials Heterostructures Indium antimonide Indium arsenides Intermetallic compounds Materials Science Photomicrographs Polymer Sciences Semiconductor materials Solid Mechanics |
title | Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20qHAADF%20method%20for%20atomic%20column-by-column%20compositional%20quantification%20of%20semiconductor%20heterostructures&rft.jtitle=Journal%20of%20materials%20science&rft.au=Khan,%20Atif%20A.&rft.date=2019-02-01&rft.volume=54&rft.issue=4&rft.spage=3230&rft.epage=3241&rft.pages=3230-3241&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-3073-y&rft_dat=%3Cgale_proqu%3EA566600627%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-993f5403ef71057bbcc44cc79d6f958ff41e1df35ceb34d235d2efe5db5487a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259642443&rft_id=info:pmid/&rft_galeid=A566600627&rfr_iscdi=true |