Loading…

Liquid crystalline cellulose derivative elastomer films under uniaxial strain

Mesogenic cellulose derivative chains cross-linked into free-standing thin films were prepared by a shear-casting technique from anisotropic precursor solutions of thermotropic (acetoxypropyl)cellulose. After shear cessation a macroscopically oriented serpentine structure with the director in averag...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2009-04, Vol.16 (2), p.199-205
Main Authors: Godinho, M. H, Filip, D, Costa, I, Carvalho, A.-L, Figueirinhas, J. L, Terentjev, E. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesogenic cellulose derivative chains cross-linked into free-standing thin films were prepared by a shear-casting technique from anisotropic precursor solutions of thermotropic (acetoxypropyl)cellulose. After shear cessation a macroscopically oriented serpentine structure with the director in average along the shear direction is locked resulting in anisotropic optical and mechanical properties of the material. These films were submitted to an external uniaxial mechanical field perpendicular and parallel to the shear direction. Stretching perpendicular to the shear direction produced significant director rotations and a reset of order of the director order parameter for a deformation in the range 2-3 as detected by X-rays and optical microscopy. The different response found for strains imposed parallel and perpendicular to the initial average director orientation indicates that even though our system shows a serpentine director modulation that is either attenuated or reinforced by deformations parallel or perpendicular to the shear direction, its behaviour is similar to theoretical predictions for monodomain nematic elastomers described in the literature.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-008-9258-9