Loading…

Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses

The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x  = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2013-06, Vol.48 (11), p.3999-4007
Main Authors: Wren, A. W., Keenan, T., Coughlan, A., Laffir, F. R., Boyd, D., Towler, M. R., Hall, M. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573
cites cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573
container_end_page 4007
container_issue 11
container_start_page 3999
container_title Journal of materials science
container_volume 48
creator Wren, A. W.
Keenan, T.
Coughlan, A.
Laffir, F. R.
Boyd, D.
Towler, M. R.
Hall, M. M.
description The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x  = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series ( Control 1.23, TGa - 1 2.32 and TGa - 2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm −1 . Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.
doi_str_mv 10.1007/s10853-013-7211-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259722251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259722251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</originalsourceid><addsrcrecordid>eNp1kL1Ow0AQhE8IJELgAegsUR_c7p19Toms8CNFpAAamtParIOjYIc7B4mOd-ANeRLOMhIVzUwz36x2hDgFdQ5K2YsAKk-1VKClRQCJe2ICqdXS5Ervi4lSiBJNBofiKIS1UiqNuYmYFy_kqerZN4H6pmuTrk6uCZf6-_PrLnq0ggZ9age9b5aYlE0Xkeadk9WGQuBwLA5q2gQ--fWpeLyaPxQ3crG8vi0uF7LSkPUyZ01sDFlbA6aZsZVmLg1gaY3mjGZlWWtSef5cAVOptbUVYUZpNjMpx2-m4mzs3frubcehd-tu59t40iGmM4tRIaZgTFW-C8Fz7ba-eSX_4UC5YS03ruXiWm5Yy2FkcGRCzLYr9n_N_0M_nNhubw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259722251</pqid></control><display><type>article</type><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><source>Springer Nature</source><creator>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</creator><creatorcontrib>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</creatorcontrib><description>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x  = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series ( Control 1.23, TGa - 1 2.32 and TGa - 2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm −1 . Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7211-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Amorphous materials ; Bioglass ; Characterization and Evaluation of Materials ; Chemical equilibrium ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Gallium oxides ; Materials Science ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Photoelectrons ; Polymer Sciences ; Raman spectroscopy ; Silicon dioxide ; Solid Mechanics ; Spectrum analysis ; Zinc oxide</subject><ispartof>Journal of materials science, 2013-06, Vol.48 (11), p.3999-4007</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</citedby><cites>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wren, A. W.</creatorcontrib><creatorcontrib>Keenan, T.</creatorcontrib><creatorcontrib>Coughlan, A.</creatorcontrib><creatorcontrib>Laffir, F. R.</creatorcontrib><creatorcontrib>Boyd, D.</creatorcontrib><creatorcontrib>Towler, M. R.</creatorcontrib><creatorcontrib>Hall, M. M.</creatorcontrib><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x  = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series ( Control 1.23, TGa - 1 2.32 and TGa - 2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm −1 . Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</description><subject>Amorphous materials</subject><subject>Bioglass</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical equilibrium</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Gallium oxides</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kL1Ow0AQhE8IJELgAegsUR_c7p19Toms8CNFpAAamtParIOjYIc7B4mOd-ANeRLOMhIVzUwz36x2hDgFdQ5K2YsAKk-1VKClRQCJe2ICqdXS5Ervi4lSiBJNBofiKIS1UiqNuYmYFy_kqerZN4H6pmuTrk6uCZf6-_PrLnq0ggZ9age9b5aYlE0Xkeadk9WGQuBwLA5q2gQ--fWpeLyaPxQ3crG8vi0uF7LSkPUyZ01sDFlbA6aZsZVmLg1gaY3mjGZlWWtSef5cAVOptbUVYUZpNjMpx2-m4mzs3frubcehd-tu59t40iGmM4tRIaZgTFW-C8Fz7ba-eSX_4UC5YS03ruXiWm5Yy2FkcGRCzLYr9n_N_0M_nNhubw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wren, A. W.</creator><creator>Keenan, T.</creator><creator>Coughlan, A.</creator><creator>Laffir, F. R.</creator><creator>Boyd, D.</creator><creator>Towler, M. R.</creator><creator>Hall, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><author>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Bioglass</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical equilibrium</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Gallium oxides</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wren, A. W.</creatorcontrib><creatorcontrib>Keenan, T.</creatorcontrib><creatorcontrib>Coughlan, A.</creatorcontrib><creatorcontrib>Laffir, F. R.</creatorcontrib><creatorcontrib>Boyd, D.</creatorcontrib><creatorcontrib>Towler, M. R.</creatorcontrib><creatorcontrib>Hall, M. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wren, A. W.</au><au>Keenan, T.</au><au>Coughlan, A.</au><au>Laffir, F. R.</au><au>Boyd, D.</au><au>Towler, M. R.</au><au>Hall, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>48</volume><issue>11</issue><spage>3999</spage><epage>4007</epage><pages>3999-4007</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x  = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series ( Control 1.23, TGa - 1 2.32 and TGa - 2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm −1 . Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7211-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-06, Vol.48 (11), p.3999-4007
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259722251
source Springer Nature
subjects Amorphous materials
Bioglass
Characterization and Evaluation of Materials
Chemical equilibrium
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Gallium oxides
Materials Science
NMR
Nuclear magnetic resonance
Organic chemistry
Photoelectrons
Polymer Sciences
Raman spectroscopy
Silicon dioxide
Solid Mechanics
Spectrum analysis
Zinc oxide
title Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20Ga2O3%E2%80%93Na2O%E2%80%93CaO%E2%80%93ZnO%E2%80%93SiO2%20bioactive%20glasses&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wren,%20A.%20W.&rft.date=2013-06-01&rft.volume=48&rft.issue=11&rft.spage=3999&rft.epage=4007&rft.pages=3999-4007&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7211-2&rft_dat=%3Cproquest_cross%3E2259722251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259722251&rft_id=info:pmid/&rfr_iscdi=true