Loading…
Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses
The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO 2 –0.40– x ZnO–0.10Na 2 O–0.08CaO glass series, (where x = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23)...
Saved in:
Published in: | Journal of materials science 2013-06, Vol.48 (11), p.3999-4007 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573 |
container_end_page | 4007 |
container_issue | 11 |
container_start_page | 3999 |
container_title | Journal of materials science |
container_volume | 48 |
creator | Wren, A. W. Keenan, T. Coughlan, A. Laffir, F. R. Boyd, D. Towler, M. R. Hall, M. M. |
description | The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO
2
–0.40–
x
ZnO–0.10Na
2
O–0.08CaO glass series, (where
x
= 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (
Control
1.23,
TGa
-
1
2.32 and
TGa
-
2
3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm
−1
. Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system. |
doi_str_mv | 10.1007/s10853-013-7211-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259722251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259722251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</originalsourceid><addsrcrecordid>eNp1kL1Ow0AQhE8IJELgAegsUR_c7p19Toms8CNFpAAamtParIOjYIc7B4mOd-ANeRLOMhIVzUwz36x2hDgFdQ5K2YsAKk-1VKClRQCJe2ICqdXS5Ervi4lSiBJNBofiKIS1UiqNuYmYFy_kqerZN4H6pmuTrk6uCZf6-_PrLnq0ggZ9age9b5aYlE0Xkeadk9WGQuBwLA5q2gQ--fWpeLyaPxQ3crG8vi0uF7LSkPUyZ01sDFlbA6aZsZVmLg1gaY3mjGZlWWtSef5cAVOptbUVYUZpNjMpx2-m4mzs3frubcehd-tu59t40iGmM4tRIaZgTFW-C8Fz7ba-eSX_4UC5YS03ruXiWm5Yy2FkcGRCzLYr9n_N_0M_nNhubw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259722251</pqid></control><display><type>article</type><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><source>Springer Nature</source><creator>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</creator><creatorcontrib>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</creatorcontrib><description>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO
2
–0.40–
x
ZnO–0.10Na
2
O–0.08CaO glass series, (where
x
= 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (
Control
1.23,
TGa
-
1
2.32 and
TGa
-
2
3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm
−1
. Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7211-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Amorphous materials ; Bioglass ; Characterization and Evaluation of Materials ; Chemical equilibrium ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Gallium oxides ; Materials Science ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Photoelectrons ; Polymer Sciences ; Raman spectroscopy ; Silicon dioxide ; Solid Mechanics ; Spectrum analysis ; Zinc oxide</subject><ispartof>Journal of materials science, 2013-06, Vol.48 (11), p.3999-4007</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</citedby><cites>FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wren, A. W.</creatorcontrib><creatorcontrib>Keenan, T.</creatorcontrib><creatorcontrib>Coughlan, A.</creatorcontrib><creatorcontrib>Laffir, F. R.</creatorcontrib><creatorcontrib>Boyd, D.</creatorcontrib><creatorcontrib>Towler, M. R.</creatorcontrib><creatorcontrib>Hall, M. M.</creatorcontrib><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO
2
–0.40–
x
ZnO–0.10Na
2
O–0.08CaO glass series, (where
x
= 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (
Control
1.23,
TGa
-
1
2.32 and
TGa
-
2
3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm
−1
. Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</description><subject>Amorphous materials</subject><subject>Bioglass</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical equilibrium</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Gallium oxides</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kL1Ow0AQhE8IJELgAegsUR_c7p19Toms8CNFpAAamtParIOjYIc7B4mOd-ANeRLOMhIVzUwz36x2hDgFdQ5K2YsAKk-1VKClRQCJe2ICqdXS5Ervi4lSiBJNBofiKIS1UiqNuYmYFy_kqerZN4H6pmuTrk6uCZf6-_PrLnq0ggZ9age9b5aYlE0Xkeadk9WGQuBwLA5q2gQ--fWpeLyaPxQ3crG8vi0uF7LSkPUyZ01sDFlbA6aZsZVmLg1gaY3mjGZlWWtSef5cAVOptbUVYUZpNjMpx2-m4mzs3frubcehd-tu59t40iGmM4tRIaZgTFW-C8Fz7ba-eSX_4UC5YS03ruXiWm5Yy2FkcGRCzLYr9n_N_0M_nNhubw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Wren, A. W.</creator><creator>Keenan, T.</creator><creator>Coughlan, A.</creator><creator>Laffir, F. R.</creator><creator>Boyd, D.</creator><creator>Towler, M. R.</creator><creator>Hall, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</title><author>Wren, A. W. ; Keenan, T. ; Coughlan, A. ; Laffir, F. R. ; Boyd, D. ; Towler, M. R. ; Hall, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Bioglass</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical equilibrium</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Gallium oxides</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wren, A. W.</creatorcontrib><creatorcontrib>Keenan, T.</creatorcontrib><creatorcontrib>Coughlan, A.</creatorcontrib><creatorcontrib>Laffir, F. R.</creatorcontrib><creatorcontrib>Boyd, D.</creatorcontrib><creatorcontrib>Towler, M. R.</creatorcontrib><creatorcontrib>Hall, M. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wren, A. W.</au><au>Keenan, T.</au><au>Coughlan, A.</au><au>Laffir, F. R.</au><au>Boyd, D.</au><au>Towler, M. R.</au><au>Hall, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>48</volume><issue>11</issue><spage>3999</spage><epage>4007</epage><pages>3999-4007</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO
2
–0.40–
x
ZnO–0.10Na
2
O–0.08CaO glass series, (where
x
= 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (
Control
1.23,
TGa
-
1
2.32 and
TGa
-
2
3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm
−1
. Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7211-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2013-06, Vol.48 (11), p.3999-4007 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259722251 |
source | Springer Nature |
subjects | Amorphous materials Bioglass Characterization and Evaluation of Materials Chemical equilibrium Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Gallium oxides Materials Science NMR Nuclear magnetic resonance Organic chemistry Photoelectrons Polymer Sciences Raman spectroscopy Silicon dioxide Solid Mechanics Spectrum analysis Zinc oxide |
title | Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20Ga2O3%E2%80%93Na2O%E2%80%93CaO%E2%80%93ZnO%E2%80%93SiO2%20bioactive%20glasses&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wren,%20A.%20W.&rft.date=2013-06-01&rft.volume=48&rft.issue=11&rft.spage=3999&rft.epage=4007&rft.pages=3999-4007&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7211-2&rft_dat=%3Cproquest_cross%3E2259722251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8e3ae44a77f125647c3eeb412b743e6a9bbf3a088dc1eab3377ca26a56945e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259722251&rft_id=info:pmid/&rfr_iscdi=true |