Loading…

Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition

Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attrac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2015-09, Vol.50 (18), p.6220-6226
Main Authors: Ashton, Taylor S, Moore, Arden L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73
cites cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73
container_end_page 6226
container_issue 18
container_start_page 6220
container_title Journal of materials science
container_volume 50
creator Ashton, Taylor S
Moore, Arden L
description Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.
doi_str_mv 10.1007/s10853-015-9180-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259746661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A449629963</galeid><sourcerecordid>A449629963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMoeK3-AFcGXLlIPclkksmyFD8KBcG265CZOZmbemcyJrml_ntzHUG6kSwCL8-TnMNLyFsO5xxAf8wcurZhwFtmeAcMnpEdb3XDZAfNc7IDEIIJqfhL8irnewBoteA7Um73CZGNYcYlh7i4A_XRzewQfiDd46Ob_mR9THGhSygpjEgXt8TZFUzBHTJ9CI66Mse87msy0DVhzseEdNjjHIZqP7g1JjriGnMo9ZPX5IWvJr75e5-Ru8-fbi-_sutvX64uL67ZILumMC1bV1cQBgQffK-k6XrdoQRllPNKeuHRDzWQstFoTCWV6UEp2Y9CON2ckffbu2uKP4-Yi72Px1T3yVaI1miplOKVOt-oyR3QhsXHktxQz3gaPy7oQ80vpDRKGKOaKnx4IlSm4GOZ3DFne3Xz_SnLN3ZIMeeE3q4pzC79shzsqTm7NWdrc_bUnIXqiM3JlV0mTP_G_p_0bpO8i9ZNKWR7dyOAq1p1A53mzW9kzqT6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259746661</pqid></control><display><type>article</type><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><source>Springer Nature</source><creator>Ashton, Taylor S ; Moore, Arden L</creator><creatorcontrib>Ashton, Taylor S ; Moore, Arden L</creatorcontrib><description>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9180-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Allotropy ; Atmospheric pressure ; Boron nitride ; Ceramics ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electron beams ; energy ; foams ; graphene ; Graphite ; High temperature ; Materials Science ; Nanomaterials ; Organic chemistry ; Original Paper ; Polymer Sciences ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; temperature ; Thermal properties ; Thermodynamic properties ; vapors ; X-ray diffraction</subject><ispartof>Journal of materials science, 2015-09, Vol.50 (18), p.6220-6226</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</citedby><cites>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ashton, Taylor S</creatorcontrib><creatorcontrib>Moore, Arden L</creatorcontrib><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</description><subject>Allotropy</subject><subject>Atmospheric pressure</subject><subject>Boron nitride</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electron beams</subject><subject>energy</subject><subject>foams</subject><subject>graphene</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>temperature</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>vapors</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMoeK3-AFcGXLlIPclkksmyFD8KBcG265CZOZmbemcyJrml_ntzHUG6kSwCL8-TnMNLyFsO5xxAf8wcurZhwFtmeAcMnpEdb3XDZAfNc7IDEIIJqfhL8irnewBoteA7Um73CZGNYcYlh7i4A_XRzewQfiDd46Ob_mR9THGhSygpjEgXt8TZFUzBHTJ9CI66Mse87msy0DVhzseEdNjjHIZqP7g1JjriGnMo9ZPX5IWvJr75e5-Ru8-fbi-_sutvX64uL67ZILumMC1bV1cQBgQffK-k6XrdoQRllPNKeuHRDzWQstFoTCWV6UEp2Y9CON2ckffbu2uKP4-Yi72Px1T3yVaI1miplOKVOt-oyR3QhsXHktxQz3gaPy7oQ80vpDRKGKOaKnx4IlSm4GOZ3DFne3Xz_SnLN3ZIMeeE3q4pzC79shzsqTm7NWdrc_bUnIXqiM3JlV0mTP_G_p_0bpO8i9ZNKWR7dyOAq1p1A53mzW9kzqT6</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Ashton, Taylor S</creator><creator>Moore, Arden L</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><author>Ashton, Taylor S ; Moore, Arden L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allotropy</topic><topic>Atmospheric pressure</topic><topic>Boron nitride</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electron beams</topic><topic>energy</topic><topic>foams</topic><topic>graphene</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>temperature</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>vapors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashton, Taylor S</creatorcontrib><creatorcontrib>Moore, Arden L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashton, Taylor S</au><au>Moore, Arden L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>50</volume><issue>18</issue><spage>6220</spage><epage>6226</epage><pages>6220-6226</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9180-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2015-09, Vol.50 (18), p.6220-6226
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259746661
source Springer Nature
subjects Allotropy
Atmospheric pressure
Boron nitride
Ceramics
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electron beams
energy
foams
graphene
Graphite
High temperature
Materials Science
Nanomaterials
Organic chemistry
Original Paper
Polymer Sciences
Raman spectroscopy
Solid Mechanics
Spectrum analysis
temperature
Thermal properties
Thermodynamic properties
vapors
X-ray diffraction
title Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20foam-like%20hexagonal%20boron%20nitride%20nanomaterials%20via%20atmospheric%20pressure%20chemical%20vapor%20deposition&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ashton,%20Taylor%20S&rft.date=2015-09-01&rft.volume=50&rft.issue=18&rft.spage=6220&rft.epage=6226&rft.pages=6220-6226&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9180-0&rft_dat=%3Cgale_proqu%3EA449629963%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259746661&rft_id=info:pmid/&rft_galeid=A449629963&rfr_iscdi=true