Loading…
Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition
Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attrac...
Saved in:
Published in: | Journal of materials science 2015-09, Vol.50 (18), p.6220-6226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73 |
container_end_page | 6226 |
container_issue | 18 |
container_start_page | 6220 |
container_title | Journal of materials science |
container_volume | 50 |
creator | Ashton, Taylor S Moore, Arden L |
description | Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties. |
doi_str_mv | 10.1007/s10853-015-9180-0 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259746661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A449629963</galeid><sourcerecordid>A449629963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMoeK3-AFcGXLlIPclkksmyFD8KBcG265CZOZmbemcyJrml_ntzHUG6kSwCL8-TnMNLyFsO5xxAf8wcurZhwFtmeAcMnpEdb3XDZAfNc7IDEIIJqfhL8irnewBoteA7Um73CZGNYcYlh7i4A_XRzewQfiDd46Ob_mR9THGhSygpjEgXt8TZFUzBHTJ9CI66Mse87msy0DVhzseEdNjjHIZqP7g1JjriGnMo9ZPX5IWvJr75e5-Ru8-fbi-_sutvX64uL67ZILumMC1bV1cQBgQffK-k6XrdoQRllPNKeuHRDzWQstFoTCWV6UEp2Y9CON2ckffbu2uKP4-Yi72Px1T3yVaI1miplOKVOt-oyR3QhsXHktxQz3gaPy7oQ80vpDRKGKOaKnx4IlSm4GOZ3DFne3Xz_SnLN3ZIMeeE3q4pzC79shzsqTm7NWdrc_bUnIXqiM3JlV0mTP_G_p_0bpO8i9ZNKWR7dyOAq1p1A53mzW9kzqT6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259746661</pqid></control><display><type>article</type><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><source>Springer Nature</source><creator>Ashton, Taylor S ; Moore, Arden L</creator><creatorcontrib>Ashton, Taylor S ; Moore, Arden L</creatorcontrib><description>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9180-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Allotropy ; Atmospheric pressure ; Boron nitride ; Ceramics ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electron beams ; energy ; foams ; graphene ; Graphite ; High temperature ; Materials Science ; Nanomaterials ; Organic chemistry ; Original Paper ; Polymer Sciences ; Raman spectroscopy ; Solid Mechanics ; Spectrum analysis ; temperature ; Thermal properties ; Thermodynamic properties ; vapors ; X-ray diffraction</subject><ispartof>Journal of materials science, 2015-09, Vol.50 (18), p.6220-6226</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</citedby><cites>FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ashton, Taylor S</creatorcontrib><creatorcontrib>Moore, Arden L</creatorcontrib><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</description><subject>Allotropy</subject><subject>Atmospheric pressure</subject><subject>Boron nitride</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electron beams</subject><subject>energy</subject><subject>foams</subject><subject>graphene</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>temperature</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>vapors</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMoeK3-AFcGXLlIPclkksmyFD8KBcG265CZOZmbemcyJrml_ntzHUG6kSwCL8-TnMNLyFsO5xxAf8wcurZhwFtmeAcMnpEdb3XDZAfNc7IDEIIJqfhL8irnewBoteA7Um73CZGNYcYlh7i4A_XRzewQfiDd46Ob_mR9THGhSygpjEgXt8TZFUzBHTJ9CI66Mse87msy0DVhzseEdNjjHIZqP7g1JjriGnMo9ZPX5IWvJr75e5-Ru8-fbi-_sutvX64uL67ZILumMC1bV1cQBgQffK-k6XrdoQRllPNKeuHRDzWQstFoTCWV6UEp2Y9CON2ckffbu2uKP4-Yi72Px1T3yVaI1miplOKVOt-oyR3QhsXHktxQz3gaPy7oQ80vpDRKGKOaKnx4IlSm4GOZ3DFne3Xz_SnLN3ZIMeeE3q4pzC79shzsqTm7NWdrc_bUnIXqiM3JlV0mTP_G_p_0bpO8i9ZNKWR7dyOAq1p1A53mzW9kzqT6</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Ashton, Taylor S</creator><creator>Moore, Arden L</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</title><author>Ashton, Taylor S ; Moore, Arden L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allotropy</topic><topic>Atmospheric pressure</topic><topic>Boron nitride</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electron beams</topic><topic>energy</topic><topic>foams</topic><topic>graphene</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>temperature</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>vapors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashton, Taylor S</creatorcontrib><creatorcontrib>Moore, Arden L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashton, Taylor S</au><au>Moore, Arden L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>50</volume><issue>18</issue><spage>6220</spage><epage>6226</epage><pages>6220-6226</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hexagonal boron nitride (h-BN) is a high temperature ceramic material with a graphite-like layered atomic arrangement and excellent basal-plane thermal conduction properties. Unlike graphite, however, h-BN is electrically insulating and possesses superior chemical stability, thereby making it attractive for many applications for which carbon allotropes are not suitable. In this work, freestanding three-dimensional foam-like h-BN nanomaterials tens of millimeters in size are realized by a low-cost atmospheric pressure chemical vapor deposition (APCVD) process. These three-dimensional foams were found to be ultralight with an effective density of 1.7 ± 0.6 mg/cm³. Strut wall thicknesses were observed to be 311 ± 82 nm, significantly thicker than reported in previous works using alternative CVD approaches. The samples were further analyzed using Raman spectroscopy, electron beam energy dispersive spectroscopy, and X-ray diffraction revealing the samples to exhibit characteristics consistent with h-BN. APCVD processes like the one presented here may provide a simple, scalable means of realizing ultralight hierarchical h-BN nanomaterials with tunable mechanical and thermal properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9180-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2015-09, Vol.50 (18), p.6220-6226 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259746661 |
source | Springer Nature |
subjects | Allotropy Atmospheric pressure Boron nitride Ceramics Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Electron beams energy foams graphene Graphite High temperature Materials Science Nanomaterials Organic chemistry Original Paper Polymer Sciences Raman spectroscopy Solid Mechanics Spectrum analysis temperature Thermal properties Thermodynamic properties vapors X-ray diffraction |
title | Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20foam-like%20hexagonal%20boron%20nitride%20nanomaterials%20via%20atmospheric%20pressure%20chemical%20vapor%20deposition&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ashton,%20Taylor%20S&rft.date=2015-09-01&rft.volume=50&rft.issue=18&rft.spage=6220&rft.epage=6226&rft.pages=6220-6226&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9180-0&rft_dat=%3Cgale_proqu%3EA449629963%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-745a57329021cfb6498b78e40696af64f2fefc8e44437e9932969b0664bd22a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259746661&rft_id=info:pmid/&rft_galeid=A449629963&rfr_iscdi=true |