Loading…
Two-phase natural circulation loop behaviour at atmospheric and subatmospheric conditions
This paper aims to present the steady-state behaviour of two-phase natural circulation loop at atmospheric and sub-atmospheric conditions. One-dimensional numerical approach is adopted to evaluate various system parameters, with special emphasis on spatial variation of thermo-physical properties and...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2019-08, Vol.233 (4), p.687-700 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to present the steady-state behaviour of two-phase natural circulation loop at atmospheric and sub-atmospheric conditions. One-dimensional numerical approach is adopted to evaluate various system parameters, with special emphasis on spatial variation of thermo-physical properties and flashing. Homogeneous equilibrium model is applied for two-phase flows. An in-house code is developed in MATLAB to solve numerical model iteratively. It is observed that consideration of spatial variation of thermo-physical properties can precisely predict the loop behaviour. The evaluated results are validated with the open literature and reasonably good agreement is observed. The heater inlet temperature, inlet pressure and heat flux are found to have significant influence on spatial variation of pressure, temperature and enthalpy. As system pressure decreases from atmospheric to sub-atmospheric (1–0.8 atm), it is observed that the sub-atmospheric loop gives a higher mass flow rate compared to atmospheric loop at lower heat fluxes. However, as the heat flux increases in the sub-atmospheric loop, the mass flow rate is reduced due to increased drag force in the loop. |
---|---|
ISSN: | 0954-4089 2041-3009 |
DOI: | 10.1177/0954408918787401 |