Loading…
Effect of the degree of substitution on the rheology of sodium carboxymethylcellulose solutions in propylene glycol/water mixtures
The linear dynamic viscoelastic properties and non-linear transient rheology of sodium carboxymethylcellulose solutions (Na-CMC) in propylene glycol/water mixtures were investigated. Measurements were carried out for the solutions of Na-CMC with three different degrees of substitution (DS), namely 0...
Saved in:
Published in: | Cellulose (London) 2017-10, Vol.24 (10), p.4151-4162 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The linear dynamic viscoelastic properties and non-linear transient rheology of sodium carboxymethylcellulose solutions (Na-CMC) in propylene glycol/water mixtures were investigated. Measurements were carried out for the solutions of Na-CMC with three different degrees of substitution (DS), namely 0.62, 0.79, 1.04, and the similar average molecular weight (M
w
≈ 250,000 g/mol). The strong synergism between the molecules of Na-CMC with DS of 0.62 and 0.79, and propylene glycol has been observed. The occurrence of the overshoot shear stress and the low loss tangent values indicate the physical cross-linking of the polymer chains. The increase of propylene glycol concentration over 80 wt% and sodium carboxymethylcellulose (DS = 0.7) over 1.6 wt% leads to the formation of a physical cross-link network. The absence of overshoot shear stress and terminal behaviour in SAOS flow of the Na-CMC
1.04
solutions in the PG/water mixture shows that no intermolecular cross-linking of polymer chains occurred in them. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-017-1444-1 |