Loading…

Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS

Cellulosic fibrous networks are modified using 3 different amino acids; small (Glycine, Gly), aliphatic (Leucine, Leu) and aromatic (Phenylalanine, Phe). The effect of amino acid functionality on chemical coupling to cellulose fibres in terms of their coverage and packing density are investigated. D...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2010-08, Vol.17 (4), p.747-756
Main Authors: Kalaskar, D. M, Ulijn, R. V, Gough, J. E, Alexander, M. R, Scurr, D. J, Sampson, W. W, Eichhorn, S. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellulosic fibrous networks are modified using 3 different amino acids; small (Glycine, Gly), aliphatic (Leucine, Leu) and aromatic (Phenylalanine, Phe). The effect of amino acid functionality on chemical coupling to cellulose fibres in terms of their coverage and packing density are investigated. Different amino acid modified cellulose networks are characterised by using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The presence of amino acids is confirmed using ToF-SIMS. The quantitative distribution of different amino acids across the cellulose surface is assessed by using XPS. It is shown that the packing density of amino acids depends on the size of the side chain; smaller amino acids (Gly, Leu) tend to couple to the surface at higher density compared to larger ones (Phe). This study has implications for the functionalisation of polysaccharide materials for a wide range of applications.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-010-9413-y