Loading…

Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams

Nanocellulose-borax-polyvinyl alcohol (PVA) hybrid foams were prepared using a facile approach in an aqueous medium followed by a freeze-casting technique. Nanocellulose was well-dispersed in the PVA-borax (PB) matrix and acted as a cross-linking agent and nanofiller to bridge the 3D network, leadin...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2017-10, Vol.24 (10), p.4433-4448
Main Authors: Han, Jingquan, Yue, Yiying, Wu, Qinglin, Huang, Chaobo, Pan, Hui, Zhan, Xianxu, Mei, Changtong, Xu, Xinwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocellulose-borax-polyvinyl alcohol (PVA) hybrid foams were prepared using a facile approach in an aqueous medium followed by a freeze-casting technique. Nanocellulose was well-dispersed in the PVA-borax (PB) matrix and acted as a cross-linking agent and nanofiller to bridge the 3D network, leading to enhanced mechanical and thermal performance. The effects of particle size, aspect ratio, surface charge and crystallinity on the microstructure and performance were investigated. With the increasing size and aspect ratio, cellulose nanofiber-PB foam with a density of ~0.110 g/cm 3 exhibited the most pronounced honeycomb-like structure with a porosity of 92.2%, the smallest cell diameter (~0.93 μm) and the highest mechanical strength (bearing more than 7560 times its own weight). Chemical cross-linking of nanocellulose-PVA foams with borax led to uniform porous structure, small pores and high mechanical strength. Possible lyophilization-induced assembly mechanisms, relationships between microstructure and mechanical properties, and complexation reactions between building blocks are proposed.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-017-1409-4