Loading…

Toward a History of Mathematics Focused on Procedures

Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of science 2017-12, Vol.22 (4), p.763-783
Main Authors: Błaszczyk, Piotr, Kanovei, Vladimir, Katz, Karin U., Katz, Mikhail G., Kutateladze, Semen S., Sherry, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143
cites cdi_FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143
container_end_page 783
container_issue 4
container_start_page 763
container_title Foundations of science
container_volume 22
creator Błaszczyk, Piotr
Kanovei, Vladimir
Katz, Karin U.
Katz, Mikhail G.
Kutateladze, Semen S.
Sherry, David
description Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.
doi_str_mv 10.1007/s10699-016-9498-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259935165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513652909</galeid><sourcerecordid>A513652909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143</originalsourceid><addsrcrecordid>eNp1kc1KAzEURgdRsFYfwN2AKxep-ZlJJssiagsVRes6pMlNndJOajKD9u1NGUEKyl3kkpxzk_Bl2SXBI4KxuIkEcykRJhzJQlaIHWUDUgqKqkKQ49RTxhCpKDnNzmJcYYyl4HyQlXP_qYPNdT6pY-vDLvcuf9TtO2x0W5uY33vTRbC5b_Ln4A3YLkA8z06cXke4-FmH2dv93fx2gmZPD9Pb8QyZgooWaVlJsSCFZtgJrY3j0gruOCs5FZzQ9ApwNh1XjlaCA7e2WADYCoioDCnYMLvq526D_-ggtmrlu9CkKxWlpZSsJLxMFOqppV6Dqhvn26DNEhoIeu0bcHXaHpeE8ZJKLBM_-oNPZWFTmz-F6wMhMS18tUvdxaimry-HLOlZE3yMAZzahnqjw04RrPZRqT4qlaJS-6gUSw7tnZjYZgnh95v_S99dtpNX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259935165</pqid></control><display><type>article</type><title>Toward a History of Mathematics Focused on Procedures</title><source>Springer Nature</source><creator>Błaszczyk, Piotr ; Kanovei, Vladimir ; Katz, Karin U. ; Katz, Mikhail G. ; Kutateladze, Semen S. ; Sherry, David</creator><creatorcontrib>Błaszczyk, Piotr ; Kanovei, Vladimir ; Katz, Karin U. ; Katz, Mikhail G. ; Kutateladze, Semen S. ; Sherry, David</creatorcontrib><description>Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.</description><identifier>ISSN: 1233-1821</identifier><identifier>EISSN: 1572-8471</identifier><identifier>DOI: 10.1007/s10699-016-9498-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Comparative analysis ; Education ; Foundations ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics history ; Methodology of the Social Sciences ; Philosophy ; Philosophy of Science</subject><ispartof>Foundations of science, 2017-12, Vol.22 (4), p.763-783</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Foundations of Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143</citedby><cites>FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143</cites><orcidid>0000-0002-3489-0158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Błaszczyk, Piotr</creatorcontrib><creatorcontrib>Kanovei, Vladimir</creatorcontrib><creatorcontrib>Katz, Karin U.</creatorcontrib><creatorcontrib>Katz, Mikhail G.</creatorcontrib><creatorcontrib>Kutateladze, Semen S.</creatorcontrib><creatorcontrib>Sherry, David</creatorcontrib><title>Toward a History of Mathematics Focused on Procedures</title><title>Foundations of science</title><addtitle>Found Sci</addtitle><description>Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.</description><subject>Comparative analysis</subject><subject>Education</subject><subject>Foundations</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics history</subject><subject>Methodology of the Social Sciences</subject><subject>Philosophy</subject><subject>Philosophy of Science</subject><issn>1233-1821</issn><issn>1572-8471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEURgdRsFYfwN2AKxep-ZlJJssiagsVRes6pMlNndJOajKD9u1NGUEKyl3kkpxzk_Bl2SXBI4KxuIkEcykRJhzJQlaIHWUDUgqKqkKQ49RTxhCpKDnNzmJcYYyl4HyQlXP_qYPNdT6pY-vDLvcuf9TtO2x0W5uY33vTRbC5b_Ln4A3YLkA8z06cXke4-FmH2dv93fx2gmZPD9Pb8QyZgooWaVlJsSCFZtgJrY3j0gruOCs5FZzQ9ApwNh1XjlaCA7e2WADYCoioDCnYMLvq526D_-ggtmrlu9CkKxWlpZSsJLxMFOqppV6Dqhvn26DNEhoIeu0bcHXaHpeE8ZJKLBM_-oNPZWFTmz-F6wMhMS18tUvdxaimry-HLOlZE3yMAZzahnqjw04RrPZRqT4qlaJS-6gUSw7tnZjYZgnh95v_S99dtpNX</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Błaszczyk, Piotr</creator><creator>Kanovei, Vladimir</creator><creator>Katz, Karin U.</creator><creator>Katz, Mikhail G.</creator><creator>Kutateladze, Semen S.</creator><creator>Sherry, David</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-3489-0158</orcidid></search><sort><creationdate>20171201</creationdate><title>Toward a History of Mathematics Focused on Procedures</title><author>Błaszczyk, Piotr ; Kanovei, Vladimir ; Katz, Karin U. ; Katz, Mikhail G. ; Kutateladze, Semen S. ; Sherry, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Comparative analysis</topic><topic>Education</topic><topic>Foundations</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics history</topic><topic>Methodology of the Social Sciences</topic><topic>Philosophy</topic><topic>Philosophy of Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Błaszczyk, Piotr</creatorcontrib><creatorcontrib>Kanovei, Vladimir</creatorcontrib><creatorcontrib>Katz, Karin U.</creatorcontrib><creatorcontrib>Katz, Mikhail G.</creatorcontrib><creatorcontrib>Kutateladze, Semen S.</creatorcontrib><creatorcontrib>Sherry, David</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Foundations of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Błaszczyk, Piotr</au><au>Kanovei, Vladimir</au><au>Katz, Karin U.</au><au>Katz, Mikhail G.</au><au>Kutateladze, Semen S.</au><au>Sherry, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a History of Mathematics Focused on Procedures</atitle><jtitle>Foundations of science</jtitle><stitle>Found Sci</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>22</volume><issue>4</issue><spage>763</spage><epage>783</epage><pages>763-783</pages><issn>1233-1821</issn><eissn>1572-8471</eissn><abstract>Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10699-016-9498-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3489-0158</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1233-1821
ispartof Foundations of science, 2017-12, Vol.22 (4), p.763-783
issn 1233-1821
1572-8471
language eng
recordid cdi_proquest_journals_2259935165
source Springer Nature
subjects Comparative analysis
Education
Foundations
Mathematical analysis
Mathematical Logic and Foundations
Mathematics history
Methodology of the Social Sciences
Philosophy
Philosophy of Science
title Toward a History of Mathematics Focused on Procedures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20History%20of%20Mathematics%20Focused%20on%20Procedures&rft.jtitle=Foundations%20of%20science&rft.au=B%C5%82aszczyk,%20Piotr&rft.date=2017-12-01&rft.volume=22&rft.issue=4&rft.spage=763&rft.epage=783&rft.pages=763-783&rft.issn=1233-1821&rft.eissn=1572-8471&rft_id=info:doi/10.1007/s10699-016-9498-3&rft_dat=%3Cgale_proqu%3EA513652909%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a9897b14a30f7aacf69d76f635627612000efd4a38f2876e6dd4beed8e178c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259935165&rft_id=info:pmid/&rft_galeid=A513652909&rfr_iscdi=true