Loading…
Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models
In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties...
Saved in:
Published in: | Qualitative theory of dynamical systems 2019-08, Vol.18 (2), p.461-475 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3 |
container_end_page | 475 |
container_issue | 2 |
container_start_page | 461 |
container_title | Qualitative theory of dynamical systems |
container_volume | 18 |
creator | Dang, Quang A Hoang, Manh Tuan |
description | In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties of the metapopulation model such as positivity, boundedness and monotone convergence of the solutions, equilibria and their stability. The numerical simulations confirm the validity of the obtained theoretical results and the advantages of NSFD schemes over standard finite difference schemes. |
doi_str_mv | 10.1007/s12346-018-0295-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259975393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259975393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8EdvxiFIolVoxALNlpw5K5cbBdob8e1KCxMT07nDufdIB4Jbge4KxfEiEskIgTEqEqeJoPAMLIgRFjCt6PmUuOeKFwJfgKqUDxoJKRhfAVuHYe5cdXPtgjYdv2djWt3mEoYEG7lw2fegHb3IbOrgLe-eh6fZwkxNcjZ05trXxfoRV6FKbsusyXLWpjqfJHzpdg4vG-ORufu8SfDw_vVcvaPu63lSPW1SzkmbEmCTYlQVhBJclY4TbAlMhTW0cNVhKUQiuClnsG6kUs0wZUluBbc1VWRLLluBu3u1j-BpcyvoQhthNLzWlXCnJmWITRWaqjiGl6Brdx_Zo4qgJ1ieVelapJ5X6pFKPU4fOnTSx3aeLf8v_l74Bltp2IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259975393</pqid></control><display><type>article</type><title>Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models</title><source>Springer Nature</source><creator>Dang, Quang A ; Hoang, Manh Tuan</creator><creatorcontrib>Dang, Quang A ; Hoang, Manh Tuan</creatorcontrib><description>In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties of the metapopulation model such as positivity, boundedness and monotone convergence of the solutions, equilibria and their stability. The numerical simulations confirm the validity of the obtained theoretical results and the advantages of NSFD schemes over standard finite difference schemes.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-018-0295-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer simulation ; Difference and Functional Equations ; Dynamic stability ; Dynamical Systems and Ergodic Theory ; Finite difference method ; Liapunov direct method ; Mathematics ; Mathematics and Statistics</subject><ispartof>Qualitative theory of dynamical systems, 2019-08, Vol.18 (2), p.461-475</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3</citedby><cites>FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dang, Quang A</creatorcontrib><creatorcontrib>Hoang, Manh Tuan</creatorcontrib><title>Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties of the metapopulation model such as positivity, boundedness and monotone convergence of the solutions, equilibria and their stability. The numerical simulations confirm the validity of the obtained theoretical results and the advantages of NSFD schemes over standard finite difference schemes.</description><subject>Computer simulation</subject><subject>Difference and Functional Equations</subject><subject>Dynamic stability</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Finite difference method</subject><subject>Liapunov direct method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8EdvxiFIolVoxALNlpw5K5cbBdob8e1KCxMT07nDufdIB4Jbge4KxfEiEskIgTEqEqeJoPAMLIgRFjCt6PmUuOeKFwJfgKqUDxoJKRhfAVuHYe5cdXPtgjYdv2djWt3mEoYEG7lw2fegHb3IbOrgLe-eh6fZwkxNcjZ05trXxfoRV6FKbsusyXLWpjqfJHzpdg4vG-ORufu8SfDw_vVcvaPu63lSPW1SzkmbEmCTYlQVhBJclY4TbAlMhTW0cNVhKUQiuClnsG6kUs0wZUluBbc1VWRLLluBu3u1j-BpcyvoQhthNLzWlXCnJmWITRWaqjiGl6Brdx_Zo4qgJ1ieVelapJ5X6pFKPU4fOnTSx3aeLf8v_l74Bltp2IA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Dang, Quang A</creator><creator>Hoang, Manh Tuan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models</title><author>Dang, Quang A ; Hoang, Manh Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Difference and Functional Equations</topic><topic>Dynamic stability</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Finite difference method</topic><topic>Liapunov direct method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Quang A</creatorcontrib><creatorcontrib>Hoang, Manh Tuan</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Quang A</au><au>Hoang, Manh Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>18</volume><issue>2</issue><spage>461</spage><epage>475</epage><pages>461-475</pages><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties of the metapopulation model such as positivity, boundedness and monotone convergence of the solutions, equilibria and their stability. The numerical simulations confirm the validity of the obtained theoretical results and the advantages of NSFD schemes over standard finite difference schemes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-018-0295-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2019-08, Vol.18 (2), p.461-475 |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_2259975393 |
source | Springer Nature |
subjects | Computer simulation Difference and Functional Equations Dynamic stability Dynamical Systems and Ergodic Theory Finite difference method Liapunov direct method Mathematics Mathematics and Statistics |
title | Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Global%20Stability%20of%20a%20Metapopulation%20Model%20and%20Its%20Dynamically%20Consistent%20Discrete%20Models&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Dang,%20Quang%20A&rft.date=2019-08-01&rft.volume=18&rft.issue=2&rft.spage=461&rft.epage=475&rft.pages=461-475&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-018-0295-y&rft_dat=%3Cproquest_cross%3E2259975393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-33710e841310883315b40267acae2a07764659474df7993b39a1cb60bc59881b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259975393&rft_id=info:pmid/&rfr_iscdi=true |