Loading…
Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension
We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method....
Saved in:
Published in: | Nonlinear analysis 2019-09, Vol.186, p.187-208 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213 |
container_end_page | 208 |
container_issue | |
container_start_page | 187 |
container_title | Nonlinear analysis |
container_volume | 186 |
creator | Naimen, Daisuke Shibata, Masataka |
description | We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α>0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension. |
doi_str_mv | 10.1016/j.na.2019.02.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260069647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X19300562</els_id><sourcerecordid>2260069647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</originalsourceid><addsrcrecordid>eNp1kM1P3DAUxK2qSGyhd46WOCd9_oiXcKsQUMRKXEDqzXKc58bbrJ3aXtD-9zVarpyeRprfvNEQcsGgZcDUj20bTMuB9S3wFkB8ISt2tRZNx1n3laxAKN50Uv0-Jd9y3gIAWwu1In-f3yJdYvbFvyLNcd4XH0OmLiZaJqSPPtlpis7RcliQ4jz7pXhLlxSHGXf0zZeJ2lRxa2YaYph9QFP1gfpAJ_9noqPfYcg19ZycODNn_P5xz8jL3e3zza9m83T_cPNz01jBeWmslcOVUsPAOwNKrWVvJIregZHjOFrjlFESR9X1Qg5Mcil75EYJrpx1I2fijFwec2vJf3vMRW_jPoX6UnOuAFSv5Lq64OiyKeac0Okl-Z1JB81Av0-qtzoY_T6pBq7rpBW5PiJY2796TDpbj8Hi6BPaosfoP4f_AxQxf_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260069647</pqid></control><display><type>article</type><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics</source><creator>Naimen, Daisuke ; Shibata, Masataka</creator><creatorcontrib>Naimen, Daisuke ; Shibata, Masataka</creatorcontrib><description>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α>0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.02.003</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Critical ; Elliptic ; Fibering map ; Kirchhoff ; Nehari manifold ; Nonlinearity ; Smooth boundaries ; Variational method</subject><ispartof>Nonlinear analysis, 2019-09, Vol.186, p.187-208</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</citedby><cites>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X19300562$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Naimen, Daisuke</creatorcontrib><creatorcontrib>Shibata, Masataka</creatorcontrib><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><title>Nonlinear analysis</title><description>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α>0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</description><subject>Critical</subject><subject>Elliptic</subject><subject>Fibering map</subject><subject>Kirchhoff</subject><subject>Nehari manifold</subject><subject>Nonlinearity</subject><subject>Smooth boundaries</subject><subject>Variational method</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1P3DAUxK2qSGyhd46WOCd9_oiXcKsQUMRKXEDqzXKc58bbrJ3aXtD-9zVarpyeRprfvNEQcsGgZcDUj20bTMuB9S3wFkB8ISt2tRZNx1n3laxAKN50Uv0-Jd9y3gIAWwu1In-f3yJdYvbFvyLNcd4XH0OmLiZaJqSPPtlpis7RcliQ4jz7pXhLlxSHGXf0zZeJ2lRxa2YaYph9QFP1gfpAJ_9noqPfYcg19ZycODNn_P5xz8jL3e3zza9m83T_cPNz01jBeWmslcOVUsPAOwNKrWVvJIregZHjOFrjlFESR9X1Qg5Mcil75EYJrpx1I2fijFwec2vJf3vMRW_jPoX6UnOuAFSv5Lq64OiyKeac0Okl-Z1JB81Av0-qtzoY_T6pBq7rpBW5PiJY2796TDpbj8Hi6BPaosfoP4f_AxQxf_o</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Naimen, Daisuke</creator><creator>Shibata, Masataka</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><author>Naimen, Daisuke ; Shibata, Masataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Critical</topic><topic>Elliptic</topic><topic>Fibering map</topic><topic>Kirchhoff</topic><topic>Nehari manifold</topic><topic>Nonlinearity</topic><topic>Smooth boundaries</topic><topic>Variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naimen, Daisuke</creatorcontrib><creatorcontrib>Shibata, Masataka</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naimen, Daisuke</au><au>Shibata, Masataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</atitle><jtitle>Nonlinear analysis</jtitle><date>2019-09</date><risdate>2019</risdate><volume>186</volume><spage>187</spage><epage>208</epage><pages>187-208</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α>0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.02.003</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2019-09, Vol.186, p.187-208 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2260069647 |
source | ScienceDirect Freedom Collection; Backfile Package - Mathematics |
subjects | Critical Elliptic Fibering map Kirchhoff Nehari manifold Nonlinearity Smooth boundaries Variational method |
title | Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20positive%20solutions%20for%20the%20Kirchhoff%20type%20elliptic%20problem%20with%20critical%20nonlinearity%20in%20high%20dimension&rft.jtitle=Nonlinear%20analysis&rft.au=Naimen,%20Daisuke&rft.date=2019-09&rft.volume=186&rft.spage=187&rft.epage=208&rft.pages=187-208&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.02.003&rft_dat=%3Cproquest_cross%3E2260069647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260069647&rft_id=info:pmid/&rfr_iscdi=true |