Loading…

Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension

We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method....

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2019-09, Vol.186, p.187-208
Main Authors: Naimen, Daisuke, Shibata, Masataka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213
cites cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213
container_end_page 208
container_issue
container_start_page 187
container_title Nonlinear analysis
container_volume 186
creator Naimen, Daisuke
Shibata, Masataka
description We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u>0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α>0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α>0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.
doi_str_mv 10.1016/j.na.2019.02.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260069647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X19300562</els_id><sourcerecordid>2260069647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</originalsourceid><addsrcrecordid>eNp1kM1P3DAUxK2qSGyhd46WOCd9_oiXcKsQUMRKXEDqzXKc58bbrJ3aXtD-9zVarpyeRprfvNEQcsGgZcDUj20bTMuB9S3wFkB8ISt2tRZNx1n3laxAKN50Uv0-Jd9y3gIAWwu1In-f3yJdYvbFvyLNcd4XH0OmLiZaJqSPPtlpis7RcliQ4jz7pXhLlxSHGXf0zZeJ2lRxa2YaYph9QFP1gfpAJ_9noqPfYcg19ZycODNn_P5xz8jL3e3zza9m83T_cPNz01jBeWmslcOVUsPAOwNKrWVvJIregZHjOFrjlFESR9X1Qg5Mcil75EYJrpx1I2fijFwec2vJf3vMRW_jPoX6UnOuAFSv5Lq64OiyKeac0Okl-Z1JB81Av0-qtzoY_T6pBq7rpBW5PiJY2796TDpbj8Hi6BPaosfoP4f_AxQxf_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260069647</pqid></control><display><type>article</type><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics</source><creator>Naimen, Daisuke ; Shibata, Masataka</creator><creatorcontrib>Naimen, Daisuke ; Shibata, Masataka</creatorcontrib><description>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u&gt;0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α&gt;0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α&gt;0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2019.02.003</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Critical ; Elliptic ; Fibering map ; Kirchhoff ; Nehari manifold ; Nonlinearity ; Smooth boundaries ; Variational method</subject><ispartof>Nonlinear analysis, 2019-09, Vol.186, p.187-208</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</citedby><cites>FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X19300562$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids></links><search><creatorcontrib>Naimen, Daisuke</creatorcontrib><creatorcontrib>Shibata, Masataka</creatorcontrib><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><title>Nonlinear analysis</title><description>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u&gt;0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α&gt;0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α&gt;0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</description><subject>Critical</subject><subject>Elliptic</subject><subject>Fibering map</subject><subject>Kirchhoff</subject><subject>Nehari manifold</subject><subject>Nonlinearity</subject><subject>Smooth boundaries</subject><subject>Variational method</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1P3DAUxK2qSGyhd46WOCd9_oiXcKsQUMRKXEDqzXKc58bbrJ3aXtD-9zVarpyeRprfvNEQcsGgZcDUj20bTMuB9S3wFkB8ISt2tRZNx1n3laxAKN50Uv0-Jd9y3gIAWwu1In-f3yJdYvbFvyLNcd4XH0OmLiZaJqSPPtlpis7RcliQ4jz7pXhLlxSHGXf0zZeJ2lRxa2YaYph9QFP1gfpAJ_9noqPfYcg19ZycODNn_P5xz8jL3e3zza9m83T_cPNz01jBeWmslcOVUsPAOwNKrWVvJIregZHjOFrjlFESR9X1Qg5Mcil75EYJrpx1I2fijFwec2vJf3vMRW_jPoX6UnOuAFSv5Lq64OiyKeac0Okl-Z1JB81Av0-qtzoY_T6pBq7rpBW5PiJY2796TDpbj8Hi6BPaosfoP4f_AxQxf_o</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Naimen, Daisuke</creator><creator>Shibata, Masataka</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</title><author>Naimen, Daisuke ; Shibata, Masataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Critical</topic><topic>Elliptic</topic><topic>Fibering map</topic><topic>Kirchhoff</topic><topic>Nehari manifold</topic><topic>Nonlinearity</topic><topic>Smooth boundaries</topic><topic>Variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naimen, Daisuke</creatorcontrib><creatorcontrib>Shibata, Masataka</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naimen, Daisuke</au><au>Shibata, Masataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension</atitle><jtitle>Nonlinear analysis</jtitle><date>2019-09</date><risdate>2019</risdate><volume>186</volume><spage>187</spage><epage>208</epage><pages>187-208</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We investigate the Kirchhoff type elliptic problem with critical nonlinearity; −1+α∫Ω|∇u|2dxΔu=λuq+u2∗−1,u&gt;0inΩ,u=0on∂Ω,where N≥5, Ω⊂RN is a bounded domain with smooth boundary ∂Ω, α&gt;0, λ∈R, 2∗=2N∕(N−2), and q∈[1,2∗−1). We prove the existence of two solutions of it via the variational method. Since N≥5 and α&gt;0, the uniqueness assertion for the associated limiting problem may fail. This causes serious difficulties in controlling concentrating Palais–Smale sequences. We overcome these by introducing new techniques. For a mountain pass type solution, we utilize the limit function of the fibering maps of the concentrating Palais–Smale sequence. This tool is based on our careful setting of Nehari type sets. On the other hand, a suitable modification to a concentrating minimizing sequence enables us to obtain a global minimum solution. This is the first work which proves the multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2019.02.003</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2019-09, Vol.186, p.187-208
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2260069647
source ScienceDirect Freedom Collection; Backfile Package - Mathematics
subjects Critical
Elliptic
Fibering map
Kirchhoff
Nehari manifold
Nonlinearity
Smooth boundaries
Variational method
title Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20positive%20solutions%20for%20the%20Kirchhoff%20type%20elliptic%20problem%20with%20critical%20nonlinearity%20in%20high%20dimension&rft.jtitle=Nonlinear%20analysis&rft.au=Naimen,%20Daisuke&rft.date=2019-09&rft.volume=186&rft.spage=187&rft.epage=208&rft.pages=187-208&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2019.02.003&rft_dat=%3Cproquest_cross%3E2260069647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-cc4b866bb25a066749a4e39f0a4dddcaf6a64ed65934b142449e2a6326fcfd213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260069647&rft_id=info:pmid/&rfr_iscdi=true