Loading…
Solution Semiflow to the Isentropic Euler System
It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach...
Saved in:
Published in: | Archive for rational mechanics and analysis 2020, Vol.235 (1), p.167-194 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433 |
container_end_page | 194 |
container_issue | 1 |
container_start_page | 167 |
container_title | Archive for rational mechanics and analysis |
container_volume | 235 |
creator | Breit, Dominic Feireisl, Eduard Hofmanová, Martina |
description | It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions. |
doi_str_mv | 10.1007/s00205-019-01420-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260244520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260244520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwFPA8-rsbLJJjlKqLRQ8RM_LJp3VlDRbdzdI397UCN48DMPA9_8DH2O3Au4FQP4QABAyDqIcJ0Xg6ozNRCqRg8rlOZsBgORlhvkluwphdzpRqhmDynVDbF2fVLRvbee-kuiS-EHJOlAfvTu0TbIcOvJJdQyR9tfswpou0M3vnrO3p-XrYsU3L8_rxeOGN1LJyDOFBKaWmNbGlLS1BdZbYUojJBSWcihMnVOjIG8aYSE7YXYLBZISSKmUc3Y39R68-xwoRL1zg-_HlxpRAaZphjBSOFGNdyF4svrg273xRy1An8zoyYwezegfM1qNITmFwgj37-T_qv9JfQNDw2V5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260244520</pqid></control><display><type>article</type><title>Solution Semiflow to the Isentropic Euler System</title><source>Springer Nature</source><creator>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</creator><creatorcontrib>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</creatorcontrib><description>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-019-01420-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Energy conservation ; Energy dissipation ; Fluid- and Aerodynamics ; Ill posed problems ; Markov processes ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; State variable ; Theoretical ; Time dependence ; Well posed problems</subject><ispartof>Archive for rational mechanics and analysis, 2020, Vol.235 (1), p.167-194</ispartof><rights>The Author(s) 2019</rights><rights>Archive for Rational Mechanics and Analysis is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</citedby><cites>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Breit, Dominic</creatorcontrib><creatorcontrib>Feireisl, Eduard</creatorcontrib><creatorcontrib>Hofmanová, Martina</creatorcontrib><title>Solution Semiflow to the Isentropic Euler System</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Energy conservation</subject><subject>Energy dissipation</subject><subject>Fluid- and Aerodynamics</subject><subject>Ill posed problems</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>State variable</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Well posed problems</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwFPA8-rsbLJJjlKqLRQ8RM_LJp3VlDRbdzdI397UCN48DMPA9_8DH2O3Au4FQP4QABAyDqIcJ0Xg6ozNRCqRg8rlOZsBgORlhvkluwphdzpRqhmDynVDbF2fVLRvbee-kuiS-EHJOlAfvTu0TbIcOvJJdQyR9tfswpou0M3vnrO3p-XrYsU3L8_rxeOGN1LJyDOFBKaWmNbGlLS1BdZbYUojJBSWcihMnVOjIG8aYSE7YXYLBZISSKmUc3Y39R68-xwoRL1zg-_HlxpRAaZphjBSOFGNdyF4svrg273xRy1An8zoyYwezegfM1qNITmFwgj37-T_qv9JfQNDw2V5</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Breit, Dominic</creator><creator>Feireisl, Eduard</creator><creator>Hofmanová, Martina</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Solution Semiflow to the Isentropic Euler System</title><author>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Energy conservation</topic><topic>Energy dissipation</topic><topic>Fluid- and Aerodynamics</topic><topic>Ill posed problems</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>State variable</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breit, Dominic</creatorcontrib><creatorcontrib>Feireisl, Eduard</creatorcontrib><creatorcontrib>Hofmanová, Martina</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breit, Dominic</au><au>Feireisl, Eduard</au><au>Hofmanová, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution Semiflow to the Isentropic Euler System</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020</date><risdate>2020</risdate><volume>235</volume><issue>1</issue><spage>167</spage><epage>194</epage><pages>167-194</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-019-01420-6</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2020, Vol.235 (1), p.167-194 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_2260244520 |
source | Springer Nature |
subjects | Classical Mechanics Complex Systems Energy conservation Energy dissipation Fluid- and Aerodynamics Ill posed problems Markov processes Mathematical and Computational Physics Physics Physics and Astronomy State variable Theoretical Time dependence Well posed problems |
title | Solution Semiflow to the Isentropic Euler System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20Semiflow%20to%20the%20Isentropic%20Euler%20System&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Breit,%20Dominic&rft.date=2020&rft.volume=235&rft.issue=1&rft.spage=167&rft.epage=194&rft.pages=167-194&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-019-01420-6&rft_dat=%3Cproquest_cross%3E2260244520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260244520&rft_id=info:pmid/&rfr_iscdi=true |