Loading…

Solution Semiflow to the Isentropic Euler System

It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 2020, Vol.235 (1), p.167-194
Main Authors: Breit, Dominic, Feireisl, Eduard, Hofmanová, Martina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433
cites cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433
container_end_page 194
container_issue 1
container_start_page 167
container_title Archive for rational mechanics and analysis
container_volume 235
creator Breit, Dominic
Feireisl, Eduard
Hofmanová, Martina
description It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.
doi_str_mv 10.1007/s00205-019-01420-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260244520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260244520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwFPA8-rsbLJJjlKqLRQ8RM_LJp3VlDRbdzdI397UCN48DMPA9_8DH2O3Au4FQP4QABAyDqIcJ0Xg6ozNRCqRg8rlOZsBgORlhvkluwphdzpRqhmDynVDbF2fVLRvbee-kuiS-EHJOlAfvTu0TbIcOvJJdQyR9tfswpou0M3vnrO3p-XrYsU3L8_rxeOGN1LJyDOFBKaWmNbGlLS1BdZbYUojJBSWcihMnVOjIG8aYSE7YXYLBZISSKmUc3Y39R68-xwoRL1zg-_HlxpRAaZphjBSOFGNdyF4svrg273xRy1An8zoyYwezegfM1qNITmFwgj37-T_qv9JfQNDw2V5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260244520</pqid></control><display><type>article</type><title>Solution Semiflow to the Isentropic Euler System</title><source>Springer Nature</source><creator>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</creator><creatorcontrib>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</creatorcontrib><description>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-019-01420-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Energy conservation ; Energy dissipation ; Fluid- and Aerodynamics ; Ill posed problems ; Markov processes ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; State variable ; Theoretical ; Time dependence ; Well posed problems</subject><ispartof>Archive for rational mechanics and analysis, 2020, Vol.235 (1), p.167-194</ispartof><rights>The Author(s) 2019</rights><rights>Archive for Rational Mechanics and Analysis is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</citedby><cites>FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Breit, Dominic</creatorcontrib><creatorcontrib>Feireisl, Eduard</creatorcontrib><creatorcontrib>Hofmanová, Martina</creatorcontrib><title>Solution Semiflow to the Isentropic Euler System</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Energy conservation</subject><subject>Energy dissipation</subject><subject>Fluid- and Aerodynamics</subject><subject>Ill posed problems</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>State variable</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Well posed problems</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwFPA8-rsbLJJjlKqLRQ8RM_LJp3VlDRbdzdI397UCN48DMPA9_8DH2O3Au4FQP4QABAyDqIcJ0Xg6ozNRCqRg8rlOZsBgORlhvkluwphdzpRqhmDynVDbF2fVLRvbee-kuiS-EHJOlAfvTu0TbIcOvJJdQyR9tfswpou0M3vnrO3p-XrYsU3L8_rxeOGN1LJyDOFBKaWmNbGlLS1BdZbYUojJBSWcihMnVOjIG8aYSE7YXYLBZISSKmUc3Y39R68-xwoRL1zg-_HlxpRAaZphjBSOFGNdyF4svrg273xRy1An8zoyYwezegfM1qNITmFwgj37-T_qv9JfQNDw2V5</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Breit, Dominic</creator><creator>Feireisl, Eduard</creator><creator>Hofmanová, Martina</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Solution Semiflow to the Isentropic Euler System</title><author>Breit, Dominic ; Feireisl, Eduard ; Hofmanová, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Energy conservation</topic><topic>Energy dissipation</topic><topic>Fluid- and Aerodynamics</topic><topic>Ill posed problems</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>State variable</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breit, Dominic</creatorcontrib><creatorcontrib>Feireisl, Eduard</creatorcontrib><creatorcontrib>Hofmanová, Martina</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breit, Dominic</au><au>Feireisl, Eduard</au><au>Hofmanová, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution Semiflow to the Isentropic Euler System</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020</date><risdate>2020</risdate><volume>235</volume><issue>1</issue><spage>167</spage><epage>194</epage><pages>167-194</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill-posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to the well-posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables—the mass density, the linear momentum, and the energy—in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-019-01420-6</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2020, Vol.235 (1), p.167-194
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2260244520
source Springer Nature
subjects Classical Mechanics
Complex Systems
Energy conservation
Energy dissipation
Fluid- and Aerodynamics
Ill posed problems
Markov processes
Mathematical and Computational Physics
Physics
Physics and Astronomy
State variable
Theoretical
Time dependence
Well posed problems
title Solution Semiflow to the Isentropic Euler System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20Semiflow%20to%20the%20Isentropic%20Euler%20System&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Breit,%20Dominic&rft.date=2020&rft.volume=235&rft.issue=1&rft.spage=167&rft.epage=194&rft.pages=167-194&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-019-01420-6&rft_dat=%3Cproquest_cross%3E2260244520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-562e0ab324baa9edf82bd1a9a1308fe708ab7ec607cc1f054baafd082e612e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260244520&rft_id=info:pmid/&rfr_iscdi=true