Loading…

Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications

In both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obta...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2019-07, Vol.7 (14), p.n/a
Main Authors: Ghobadi, Amir, Ulusoy Ghobadi, Turkan Gamze, Karadas, Ferdi, Ozbay, Ekmel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03
cites cdi_FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced optical materials
container_volume 7
creator Ghobadi, Amir
Ulusoy Ghobadi, Turkan Gamze
Karadas, Ferdi
Ozbay, Ekmel
description In both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obtained in bulky semiconductor‐based designs where the active layer thickness is larger than light penetration depth. However, most low‐bandgap semiconductors have a carrier diffusion length much smaller than the light penetration depth. Thus, photogenerated electron–hole pairs will recombine within the semiconductor bulk. Therefore, an efficient design should fully harvest light in dimensions in the order of the carriers' diffusion length to maximize their collection probability. For this aim, in recent years, many studies based on metasurfaces and metamaterials were conducted to obtain broadband and near‐unity light absorption in subwavelength ultrathin semiconductor thicknesses. This review summarizes these strategies in five main categories: light trapping based on i) strong interference in planar multilayer cavities, ii) metal nanounits, iii) dielectric units, iv) designed semiconductor units, and v) trapping scaffolds. The review highlights recent studies in which an ultrathin active layer has been coupled to the above‐mentioned trapping schemes to maximize the cell optical performance. Thinning the semiconductor active layer thickness down to a level comparable with carriers' diffusion length, while keeping its absorption high, is an ultimate goal to boost the performance of optoelectronic devices. This review summarizes the recent advancements in semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications.
doi_str_mv 10.1002/adom.201900028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260895067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260895067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMoOOaungOeO5N0_chxTqfCxoRNPIYsSV1G29QkVXb2HzddRb15ej94fs_L-wBwidEYI0SuuTTVmCBMUZjyEzAgmCYRRhk-_dOfg5Fz-yAJQ0wn2QB8rlWlhallK7yxcLPTNZzrsoI33CkJl8pz19qCC-Ugr_tFxb2ympcOFgF52hlv3k3puRZHyXGhSiW8NWLX2fMSvnQMXDel9l7Xr3DahFZwr03tLsBZEdzU6LsOwfP8bjN7iBar-8fZdBGJOMnySKRCYpUnkzhHQoY3cSY4zygmBZGywIhMOBayyBO0xYSjJI1TvqUkp4QQtUXxEFz1vo01b61ynu1Na-twkhGSopwmKM2CatyrhDXOWVWwxuqK2wPDiHVZsy5r9pN1AGgPfOhSHf5Rs-ntavnLfgEmXITz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260895067</pqid></control><display><type>article</type><title>Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ghobadi, Amir ; Ulusoy Ghobadi, Turkan Gamze ; Karadas, Ferdi ; Ozbay, Ekmel</creator><creatorcontrib>Ghobadi, Amir ; Ulusoy Ghobadi, Turkan Gamze ; Karadas, Ferdi ; Ozbay, Ekmel</creatorcontrib><description>In both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obtained in bulky semiconductor‐based designs where the active layer thickness is larger than light penetration depth. However, most low‐bandgap semiconductors have a carrier diffusion length much smaller than the light penetration depth. Thus, photogenerated electron–hole pairs will recombine within the semiconductor bulk. Therefore, an efficient design should fully harvest light in dimensions in the order of the carriers' diffusion length to maximize their collection probability. For this aim, in recent years, many studies based on metasurfaces and metamaterials were conducted to obtain broadband and near‐unity light absorption in subwavelength ultrathin semiconductor thicknesses. This review summarizes these strategies in five main categories: light trapping based on i) strong interference in planar multilayer cavities, ii) metal nanounits, iii) dielectric units, iv) designed semiconductor units, and v) trapping scaffolds. The review highlights recent studies in which an ultrathin active layer has been coupled to the above‐mentioned trapping schemes to maximize the cell optical performance. Thinning the semiconductor active layer thickness down to a level comparable with carriers' diffusion length, while keeping its absorption high, is an ultimate goal to boost the performance of optoelectronic devices. This review summarizes the recent advancements in semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201900028</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Broadband ; Design ; Dielectric strength ; Diffusion length ; Electromagnetic absorption ; Light ; light trapping ; Materials science ; Metamaterials ; Metasurfaces ; Multilayers ; Optics ; Penetration depth ; Photovoltaic cells ; photovoltaics ; Solar cells ; Thickness ; Thin films ; Trapping ; Water splitting</subject><ispartof>Advanced optical materials, 2019-07, Vol.7 (14), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03</citedby><cites>FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03</cites><orcidid>0000-0003-2953-1828 ; 0000-0002-7669-1587 ; 0000-0001-7171-9889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghobadi, Amir</creatorcontrib><creatorcontrib>Ulusoy Ghobadi, Turkan Gamze</creatorcontrib><creatorcontrib>Karadas, Ferdi</creatorcontrib><creatorcontrib>Ozbay, Ekmel</creatorcontrib><title>Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications</title><title>Advanced optical materials</title><description>In both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obtained in bulky semiconductor‐based designs where the active layer thickness is larger than light penetration depth. However, most low‐bandgap semiconductors have a carrier diffusion length much smaller than the light penetration depth. Thus, photogenerated electron–hole pairs will recombine within the semiconductor bulk. Therefore, an efficient design should fully harvest light in dimensions in the order of the carriers' diffusion length to maximize their collection probability. For this aim, in recent years, many studies based on metasurfaces and metamaterials were conducted to obtain broadband and near‐unity light absorption in subwavelength ultrathin semiconductor thicknesses. This review summarizes these strategies in five main categories: light trapping based on i) strong interference in planar multilayer cavities, ii) metal nanounits, iii) dielectric units, iv) designed semiconductor units, and v) trapping scaffolds. The review highlights recent studies in which an ultrathin active layer has been coupled to the above‐mentioned trapping schemes to maximize the cell optical performance. Thinning the semiconductor active layer thickness down to a level comparable with carriers' diffusion length, while keeping its absorption high, is an ultimate goal to boost the performance of optoelectronic devices. This review summarizes the recent advancements in semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications.</description><subject>Broadband</subject><subject>Design</subject><subject>Dielectric strength</subject><subject>Diffusion length</subject><subject>Electromagnetic absorption</subject><subject>Light</subject><subject>light trapping</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Multilayers</subject><subject>Optics</subject><subject>Penetration depth</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Trapping</subject><subject>Water splitting</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYxoMoOOaungOeO5N0_chxTqfCxoRNPIYsSV1G29QkVXb2HzddRb15ej94fs_L-wBwidEYI0SuuTTVmCBMUZjyEzAgmCYRRhk-_dOfg5Fz-yAJQ0wn2QB8rlWlhallK7yxcLPTNZzrsoI33CkJl8pz19qCC-Ugr_tFxb2ympcOFgF52hlv3k3puRZHyXGhSiW8NWLX2fMSvnQMXDel9l7Xr3DahFZwr03tLsBZEdzU6LsOwfP8bjN7iBar-8fZdBGJOMnySKRCYpUnkzhHQoY3cSY4zygmBZGywIhMOBayyBO0xYSjJI1TvqUkp4QQtUXxEFz1vo01b61ynu1Na-twkhGSopwmKM2CatyrhDXOWVWwxuqK2wPDiHVZsy5r9pN1AGgPfOhSHf5Rs-ntavnLfgEmXITz</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ghobadi, Amir</creator><creator>Ulusoy Ghobadi, Turkan Gamze</creator><creator>Karadas, Ferdi</creator><creator>Ozbay, Ekmel</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2953-1828</orcidid><orcidid>https://orcid.org/0000-0002-7669-1587</orcidid><orcidid>https://orcid.org/0000-0001-7171-9889</orcidid></search><sort><creationdate>20190701</creationdate><title>Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications</title><author>Ghobadi, Amir ; Ulusoy Ghobadi, Turkan Gamze ; Karadas, Ferdi ; Ozbay, Ekmel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broadband</topic><topic>Design</topic><topic>Dielectric strength</topic><topic>Diffusion length</topic><topic>Electromagnetic absorption</topic><topic>Light</topic><topic>light trapping</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Multilayers</topic><topic>Optics</topic><topic>Penetration depth</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Trapping</topic><topic>Water splitting</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghobadi, Amir</creatorcontrib><creatorcontrib>Ulusoy Ghobadi, Turkan Gamze</creatorcontrib><creatorcontrib>Karadas, Ferdi</creatorcontrib><creatorcontrib>Ozbay, Ekmel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghobadi, Amir</au><au>Ulusoy Ghobadi, Turkan Gamze</au><au>Karadas, Ferdi</au><au>Ozbay, Ekmel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications</atitle><jtitle>Advanced optical materials</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>7</volume><issue>14</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>In both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obtained in bulky semiconductor‐based designs where the active layer thickness is larger than light penetration depth. However, most low‐bandgap semiconductors have a carrier diffusion length much smaller than the light penetration depth. Thus, photogenerated electron–hole pairs will recombine within the semiconductor bulk. Therefore, an efficient design should fully harvest light in dimensions in the order of the carriers' diffusion length to maximize their collection probability. For this aim, in recent years, many studies based on metasurfaces and metamaterials were conducted to obtain broadband and near‐unity light absorption in subwavelength ultrathin semiconductor thicknesses. This review summarizes these strategies in five main categories: light trapping based on i) strong interference in planar multilayer cavities, ii) metal nanounits, iii) dielectric units, iv) designed semiconductor units, and v) trapping scaffolds. The review highlights recent studies in which an ultrathin active layer has been coupled to the above‐mentioned trapping schemes to maximize the cell optical performance. Thinning the semiconductor active layer thickness down to a level comparable with carriers' diffusion length, while keeping its absorption high, is an ultimate goal to boost the performance of optoelectronic devices. This review summarizes the recent advancements in semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201900028</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-2953-1828</orcidid><orcidid>https://orcid.org/0000-0002-7669-1587</orcidid><orcidid>https://orcid.org/0000-0001-7171-9889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2019-07, Vol.7 (14), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2260895067
source Wiley-Blackwell Read & Publish Collection
subjects Broadband
Design
Dielectric strength
Diffusion length
Electromagnetic absorption
Light
light trapping
Materials science
Metamaterials
Metasurfaces
Multilayers
Optics
Penetration depth
Photovoltaic cells
photovoltaics
Solar cells
Thickness
Thin films
Trapping
Water splitting
title Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20Thin%20Film%20Based%20Metasurfaces%20and%20Metamaterials%20for%20Photovoltaic%20and%20Photoelectrochemical%20Water%20Splitting%20Applications&rft.jtitle=Advanced%20optical%20materials&rft.au=Ghobadi,%20Amir&rft.date=2019-07-01&rft.volume=7&rft.issue=14&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201900028&rft_dat=%3Cproquest_cross%3E2260895067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-c6cd1e854380cd00217caa7912f2ddf1024a1cdf850b12a05636ab9289222eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2260895067&rft_id=info:pmid/&rfr_iscdi=true