Loading…

Determination of Mohr–Coulomb Parameters from Nonlinear Strength Criteria for 3D Slopes

Many experimental data have illustrated that the strength envelops for soils are not linear. Nevertheless, the linear Mohr–Coulomb (MC) strength parameters are widely applied for the conventional method, software codes, and engineering standards in the slope design practice. Hence, this paper develo...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-12
Main Authors: Zhang, Juan, Qiu, Yue, Wang, Yuke, Wu, Di, Wan, Yukuai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many experimental data have illustrated that the strength envelops for soils are not linear. Nevertheless, the linear Mohr–Coulomb (MC) strength parameters are widely applied for the conventional method, software codes, and engineering standards in the slope design practice. Hence, this paper developed the 3D limit analysis for the stability of soil slopes with the nonlinear strength criterion. Based on a numerical optimization procedure written in Matlab software codes, the equivalent MC parameters (the equivalent friction angle and the equivalent cohesion) from the nonlinear strength envelopes were derived with respect to the least upper-bound solutions. Further investigations were made to assess the influences of nonlinear strength parameters and slope geometries on the equivalent MC parameters. The presented results indicate that the equivalent MC parameters are closely related to the nonlinear strength parameters. As the inclination angle increases, the equivalent friction angle becomes bigger, but the equivalent cohesion becomes smaller. Besides, 3D effects on the equivalent MC parameters were found to be slight. The presented approach for the determination of MC strength parameters is analytical and rigorous, and the approximate MC strength parameters in the provided design tables can be alternative references for practical use.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/6927654