Loading…

Optimization method for the determination of the most unfavorable imperfection of structures

The paper presents an optimization method for direct determination of the most unfavorable imperfection of structures by means of ultimate limit states. When analyzing imperfection sensitive structures it turns out that the choice of the shape and size of initial imperfections has a major influence...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2008-11, Vol.42 (6), p.859-872
Main Authors: Kristanič, Niko, Korelc, Jože
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents an optimization method for direct determination of the most unfavorable imperfection of structures by means of ultimate limit states. When analyzing imperfection sensitive structures it turns out that the choice of the shape and size of initial imperfections has a major influence on the response of the structure and its ultimate state. Within the optimization algorithm the objective function is constructed by means of a fully nonlinear direct and first order sensitivity analysis. The method is not limited to small imperfections and also allows the imposition of “technological” constraints on the shape of the imperfection, thus making it possible to avoid unrealistically low ultimate loads. When carefully constructed, the objective function and constraints remain linear enabling the use of numerically efficient and readily available linear programming algorithms. Imperfection analyses are shown for thin-walled girders and a cylinder to demonstrate the applicability and efficiency of the proposed method.
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-008-0288-9