Loading…

Multi-scale solid oxide fuel cell materials modeling

Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typical...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2009-10, Vol.44 (5), p.683-703
Main Authors: Kim, Ji Hoon, Liu, Wing Kam, Lee, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3
cites cdi_FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3
container_end_page 703
container_issue 5
container_start_page 683
container_title Computational mechanics
container_volume 44
creator Kim, Ji Hoon
Liu, Wing Kam
Lee, Christopher
description Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.
doi_str_mv 10.1007/s00466-009-0402-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261311527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261311527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZ_UyOUvyCihc9L8nupKRsm7qbgP57UyJ4kjkMA8_7DjyMXSPcIoC9ywDKGA5QcVAguD1hC1RScKiEOmULQFtya6w-Zxc5bwFQl1IvmHod49Dx7OtIRe5jF4r-qwtUtCPFwlOMxa4eKHV1zMWuDxS7_eaSnbXTTVe_e8k-Hh_eV898_fb0srpfcy_RDJxCqChYBGPB1mRBIFJjp6klKlU23gTbQGlBgq6q1pCwSra-8spr7Ru5ZDdz7yH1nyPlwW37Me2nl04IgxJRCztROFM-9Tknat0hdbs6fTsEd5TjZjlukuOOctwxI-ZMntj9htJf8_-hH6RvZbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261311527</pqid></control><display><type>article</type><title>Multi-scale solid oxide fuel cell materials modeling</title><source>Springer Nature</source><creator>Kim, Ji Hoon ; Liu, Wing Kam ; Lee, Christopher</creator><creatorcontrib>Kim, Ji Hoon ; Liu, Wing Kam ; Lee, Christopher</creatorcontrib><description>Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-009-0402-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Anode effect ; Cermets ; Chemical reactions ; Classical and Continuum Physics ; Coarsening ; Computational Science and Engineering ; Conservation equations ; Density ; Electrode materials ; Electrolytic cells ; Engineering ; Evolution ; Kinetic equations ; Mathematical models ; Microstructure ; Nickel ; Original Paper ; Performance degradation ; Performance prediction ; Solid oxide fuel cells ; Theoretical and Applied Mechanics ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Computational mechanics, 2009-10, Vol.44 (5), p.683-703</ispartof><rights>Springer-Verlag 2009</rights><rights>Computational Mechanics is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3</citedby><cites>FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Ji Hoon</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><title>Multi-scale solid oxide fuel cell materials modeling</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.</description><subject>Anode effect</subject><subject>Cermets</subject><subject>Chemical reactions</subject><subject>Classical and Continuum Physics</subject><subject>Coarsening</subject><subject>Computational Science and Engineering</subject><subject>Conservation equations</subject><subject>Density</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Kinetic equations</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Performance degradation</subject><subject>Performance prediction</subject><subject>Solid oxide fuel cells</subject><subject>Theoretical and Applied Mechanics</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZ_UyOUvyCihc9L8nupKRsm7qbgP57UyJ4kjkMA8_7DjyMXSPcIoC9ywDKGA5QcVAguD1hC1RScKiEOmULQFtya6w-Zxc5bwFQl1IvmHod49Dx7OtIRe5jF4r-qwtUtCPFwlOMxa4eKHV1zMWuDxS7_eaSnbXTTVe_e8k-Hh_eV898_fb0srpfcy_RDJxCqChYBGPB1mRBIFJjp6klKlU23gTbQGlBgq6q1pCwSra-8spr7Ru5ZDdz7yH1nyPlwW37Me2nl04IgxJRCztROFM-9Tknat0hdbs6fTsEd5TjZjlukuOOctwxI-ZMntj9htJf8_-hH6RvZbU</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Kim, Ji Hoon</creator><creator>Liu, Wing Kam</creator><creator>Lee, Christopher</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091001</creationdate><title>Multi-scale solid oxide fuel cell materials modeling</title><author>Kim, Ji Hoon ; Liu, Wing Kam ; Lee, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anode effect</topic><topic>Cermets</topic><topic>Chemical reactions</topic><topic>Classical and Continuum Physics</topic><topic>Coarsening</topic><topic>Computational Science and Engineering</topic><topic>Conservation equations</topic><topic>Density</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Kinetic equations</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Performance degradation</topic><topic>Performance prediction</topic><topic>Solid oxide fuel cells</topic><topic>Theoretical and Applied Mechanics</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji Hoon</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji Hoon</au><au>Liu, Wing Kam</au><au>Lee, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale solid oxide fuel cell materials modeling</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>44</volume><issue>5</issue><spage>683</spage><epage>703</epage><pages>683-703</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Performance and degradation of fuel cell components are discussed in a multi-scale framework in this paper. Electrochemical reactions in a solid oxide fuel cell occur simultaneously as charge and gas pass through the anode, electrolyte, and cathode to produce electric power. Since fuel cells typically operate at high temperatures for long periods of time, performance degradation due to aging of the fuel cell materials should be examined. This phenomenon is treated in a multi-scale framework by considering how microstructure evolution affects the performance at the macro-scale. Mass and charge conservation equations and electrochemical kinetic equations are solved to predict the overall cell performance using the local properties calculated at the micro-scale. Separately, the microstructures assigned to the macroscopic integration points are evolved via the Cahn–Hilliard equation using an experimentally calibrated kinetic parameter. The effective properties of the evolving microstructure are obtained by homogenization and incorporated in the macro-scale calculation. The proposed model is applied to a solid oxide fuel cell system with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Our model predicts performance degradation after extended hours of operation related to nickel particle coarsening and the resulting decrease in triple phase boundary (TPB) density of the anode material. The investigation of the microstructural effects on TPB density suggests that using Ni and YSZ particles of similar size may retard performance degradation due to anode aging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-009-0402-7</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2009-10, Vol.44 (5), p.683-703
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261311527
source Springer Nature
subjects Anode effect
Cermets
Chemical reactions
Classical and Continuum Physics
Coarsening
Computational Science and Engineering
Conservation equations
Density
Electrode materials
Electrolytic cells
Engineering
Evolution
Kinetic equations
Mathematical models
Microstructure
Nickel
Original Paper
Performance degradation
Performance prediction
Solid oxide fuel cells
Theoretical and Applied Mechanics
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Multi-scale solid oxide fuel cell materials modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20solid%20oxide%20fuel%20cell%20materials%20modeling&rft.jtitle=Computational%20mechanics&rft.au=Kim,%20Ji%20Hoon&rft.date=2009-10-01&rft.volume=44&rft.issue=5&rft.spage=683&rft.epage=703&rft.pages=683-703&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-009-0402-7&rft_dat=%3Cproquest_cross%3E2261311527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-edd9ed7106707ae70211eb7b7ba31448bc6d7b087030599f6e2743fc9c4c55cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261311527&rft_id=info:pmid/&rfr_iscdi=true