Loading…
A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems
An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its defo...
Saved in:
Published in: | Computational mechanics 2000-01, Vol.24 (6), p.463-475 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773 |
---|---|
cites | |
container_end_page | 475 |
container_issue | 6 |
container_start_page | 463 |
container_title | Computational mechanics |
container_volume | 24 |
creator | GUMASTE, U. A PARK, K. C ALVIN, K. F |
description | An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled. |
doi_str_mv | 10.1007/s004660050006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMouH4cvQf0Wp00TdIeRfyCBS96LtlmupslbdZMKuy_t4uCeBoYnvdh5mXsSsCtADB3BFBpDaAAQB-xhahkWUBTVsdsAcLUhdFGnbIzoi2AULVUC_Z1z3s7-LDnsed-2AXf-cx3NmWffRzR8ewH5H7MuE72sOI2rGPyeTMQ72M6sDYEDNyONuzJ08G0wYwprnHEOBGnnKYuTzPHaU8ZB7pgJ70NhJe_85x9PD2-P7wUy7fn14f7ZdGVTZkL1-GqcqABnVPglBOIoJ2zVQO10aqSoFa60cZUCqF2smpWoOe_sUbXGyPP2fWPd5fi54SU222c0nwotWWphRIgGzFTxQ_VpUiUsG93yQ827VsB7aHa9l-1M3_za7XU2dAnO3ae_kKlnFkpvwF5dHqP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510391</pqid></control><display><type>article</type><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><source>Springer Nature</source><creator>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</creator><creatorcontrib>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</creatorcontrib><description>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050006</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Chemical partition ; Computer simulation ; Deformation ; Equations of motion ; Equilibrium equations ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lagrange multiplier ; Mathematical methods in physics ; Numerical approximation and analysis ; Numerical differentiation and integration ; Parallel computers ; Partitions ; Physics ; Rigid-body dynamics ; Solid mechanics ; Structural and continuum mechanics ; Substructures ; Time integration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computational mechanics, 2000-01, Vol.24 (6), p.463-475</ispartof><rights>2000 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2000). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1236603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GUMASTE, U. A</creatorcontrib><creatorcontrib>PARK, K. C</creatorcontrib><creatorcontrib>ALVIN, K. F</creatorcontrib><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><title>Computational mechanics</title><description>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</description><subject>Algorithms</subject><subject>Chemical partition</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Equations of motion</subject><subject>Equilibrium equations</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lagrange multiplier</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Numerical differentiation and integration</subject><subject>Parallel computers</subject><subject>Partitions</subject><subject>Physics</subject><subject>Rigid-body dynamics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Substructures</subject><subject>Time integration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAQhoMouH4cvQf0Wp00TdIeRfyCBS96LtlmupslbdZMKuy_t4uCeBoYnvdh5mXsSsCtADB3BFBpDaAAQB-xhahkWUBTVsdsAcLUhdFGnbIzoi2AULVUC_Z1z3s7-LDnsed-2AXf-cx3NmWffRzR8ewH5H7MuE72sOI2rGPyeTMQ72M6sDYEDNyONuzJ08G0wYwprnHEOBGnnKYuTzPHaU8ZB7pgJ70NhJe_85x9PD2-P7wUy7fn14f7ZdGVTZkL1-GqcqABnVPglBOIoJ2zVQO10aqSoFa60cZUCqF2smpWoOe_sUbXGyPP2fWPd5fi54SU222c0nwotWWphRIgGzFTxQ_VpUiUsG93yQ827VsB7aHa9l-1M3_za7XU2dAnO3ae_kKlnFkpvwF5dHqP</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>GUMASTE, U. A</creator><creator>PARK, K. C</creator><creator>ALVIN, K. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000101</creationdate><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><author>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Chemical partition</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Equations of motion</topic><topic>Equilibrium equations</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lagrange multiplier</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Numerical differentiation and integration</topic><topic>Parallel computers</topic><topic>Partitions</topic><topic>Physics</topic><topic>Rigid-body dynamics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Substructures</topic><topic>Time integration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUMASTE, U. A</creatorcontrib><creatorcontrib>PARK, K. C</creatorcontrib><creatorcontrib>ALVIN, K. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUMASTE, U. A</au><au>PARK, K. C</au><au>ALVIN, K. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</atitle><jtitle>Computational mechanics</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>24</volume><issue>6</issue><spage>463</spage><epage>475</epage><pages>463-475</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050006</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2000-01, Vol.24 (6), p.463-475 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261510391 |
source | Springer Nature |
subjects | Algorithms Chemical partition Computer simulation Deformation Equations of motion Equilibrium equations Exact sciences and technology Fundamental areas of phenomenology (including applications) Lagrange multiplier Mathematical methods in physics Numerical approximation and analysis Numerical differentiation and integration Parallel computers Partitions Physics Rigid-body dynamics Solid mechanics Structural and continuum mechanics Substructures Time integration Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20implicit%20partitioned%20time%20integration%20algorithms%20for%20parallel%20analysis%20of%20heterogeneous%20structural%20systems&rft.jtitle=Computational%20mechanics&rft.au=GUMASTE,%20U.%20A&rft.date=2000-01-01&rft.volume=24&rft.issue=6&rft.spage=463&rft.epage=475&rft.pages=463-475&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050006&rft_dat=%3Cproquest_cross%3E2261510391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261510391&rft_id=info:pmid/&rfr_iscdi=true |