Loading…

A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems

An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its defo...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2000-01, Vol.24 (6), p.463-475
Main Authors: GUMASTE, U. A, PARK, K. C, ALVIN, K. F
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773
cites
container_end_page 475
container_issue 6
container_start_page 463
container_title Computational mechanics
container_volume 24
creator GUMASTE, U. A
PARK, K. C
ALVIN, K. F
description An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.
doi_str_mv 10.1007/s004660050006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMouH4cvQf0Wp00TdIeRfyCBS96LtlmupslbdZMKuy_t4uCeBoYnvdh5mXsSsCtADB3BFBpDaAAQB-xhahkWUBTVsdsAcLUhdFGnbIzoi2AULVUC_Z1z3s7-LDnsed-2AXf-cx3NmWffRzR8ewH5H7MuE72sOI2rGPyeTMQ72M6sDYEDNyONuzJ08G0wYwprnHEOBGnnKYuTzPHaU8ZB7pgJ70NhJe_85x9PD2-P7wUy7fn14f7ZdGVTZkL1-GqcqABnVPglBOIoJ2zVQO10aqSoFa60cZUCqF2smpWoOe_sUbXGyPP2fWPd5fi54SU222c0nwotWWphRIgGzFTxQ_VpUiUsG93yQ827VsB7aHa9l-1M3_za7XU2dAnO3ae_kKlnFkpvwF5dHqP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510391</pqid></control><display><type>article</type><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><source>Springer Nature</source><creator>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</creator><creatorcontrib>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</creatorcontrib><description>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050006</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Chemical partition ; Computer simulation ; Deformation ; Equations of motion ; Equilibrium equations ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lagrange multiplier ; Mathematical methods in physics ; Numerical approximation and analysis ; Numerical differentiation and integration ; Parallel computers ; Partitions ; Physics ; Rigid-body dynamics ; Solid mechanics ; Structural and continuum mechanics ; Substructures ; Time integration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computational mechanics, 2000-01, Vol.24 (6), p.463-475</ispartof><rights>2000 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2000). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1236603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GUMASTE, U. A</creatorcontrib><creatorcontrib>PARK, K. C</creatorcontrib><creatorcontrib>ALVIN, K. F</creatorcontrib><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><title>Computational mechanics</title><description>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</description><subject>Algorithms</subject><subject>Chemical partition</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Equations of motion</subject><subject>Equilibrium equations</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lagrange multiplier</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Numerical differentiation and integration</subject><subject>Parallel computers</subject><subject>Partitions</subject><subject>Physics</subject><subject>Rigid-body dynamics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Substructures</subject><subject>Time integration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAQhoMouH4cvQf0Wp00TdIeRfyCBS96LtlmupslbdZMKuy_t4uCeBoYnvdh5mXsSsCtADB3BFBpDaAAQB-xhahkWUBTVsdsAcLUhdFGnbIzoi2AULVUC_Z1z3s7-LDnsed-2AXf-cx3NmWffRzR8ewH5H7MuE72sOI2rGPyeTMQ72M6sDYEDNyONuzJ08G0wYwprnHEOBGnnKYuTzPHaU8ZB7pgJ70NhJe_85x9PD2-P7wUy7fn14f7ZdGVTZkL1-GqcqABnVPglBOIoJ2zVQO10aqSoFa60cZUCqF2smpWoOe_sUbXGyPP2fWPd5fi54SU222c0nwotWWphRIgGzFTxQ_VpUiUsG93yQ827VsB7aHa9l-1M3_za7XU2dAnO3ae_kKlnFkpvwF5dHqP</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>GUMASTE, U. A</creator><creator>PARK, K. C</creator><creator>ALVIN, K. F</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000101</creationdate><title>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</title><author>GUMASTE, U. A ; PARK, K. C ; ALVIN, K. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Chemical partition</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Equations of motion</topic><topic>Equilibrium equations</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lagrange multiplier</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Numerical differentiation and integration</topic><topic>Parallel computers</topic><topic>Partitions</topic><topic>Physics</topic><topic>Rigid-body dynamics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Substructures</topic><topic>Time integration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUMASTE, U. A</creatorcontrib><creatorcontrib>PARK, K. C</creatorcontrib><creatorcontrib>ALVIN, K. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUMASTE, U. A</au><au>PARK, K. C</au><au>ALVIN, K. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems</atitle><jtitle>Computational mechanics</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>24</volume><issue>6</issue><spage>463</spage><epage>475</epage><pages>463-475</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>An implicit time integration algorithm is presented for the solution of linear structural dynamics problems on parallel computers. The present algorithm is derived from the partitioned equations of motion for a structure which consist of the equilibrium equations of each substructure due to its deformation energy, the self-equilibrium condition for each substructure under rigid-body motions, the partition boundary displacement compatibility condition and Newton's 3rd law along the partition boundary forces. A novel feature of the present algorithm is a flexibility normalization along the partitioned boundary nodes by using a localized version of the method of Lagrange multipliers, thus making the algorithm insensitive to both material and kinematic heterogeneities among the partitioned substructures. Numerical performance of the present algorithm demonstrates both its simplicity and efficiency. Hence, we recommend it for production analysis of heterogeneous structures modeled.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2000-01, Vol.24 (6), p.463-475
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261510391
source Springer Nature
subjects Algorithms
Chemical partition
Computer simulation
Deformation
Equations of motion
Equilibrium equations
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lagrange multiplier
Mathematical methods in physics
Numerical approximation and analysis
Numerical differentiation and integration
Parallel computers
Partitions
Physics
Rigid-body dynamics
Solid mechanics
Structural and continuum mechanics
Substructures
Time integration
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20implicit%20partitioned%20time%20integration%20algorithms%20for%20parallel%20analysis%20of%20heterogeneous%20structural%20systems&rft.jtitle=Computational%20mechanics&rft.au=GUMASTE,%20U.%20A&rft.date=2000-01-01&rft.volume=24&rft.issue=6&rft.spage=463&rft.epage=475&rft.pages=463-475&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050006&rft_dat=%3Cproquest_cross%3E2261510391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-dceb4d060edd50d5d1ee06dda49087654305b6967745e08d349b06143e8edf773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261510391&rft_id=info:pmid/&rfr_iscdi=true