Loading…
Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure
While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durabili...
Saved in:
Published in: | Computational mechanics 2002-11, Vol.29 (6), p.498-509 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643 |
---|---|
cites | |
container_end_page | 509 |
container_issue | 6 |
container_start_page | 498 |
container_title | Computational mechanics |
container_volume | 29 |
creator | CHO, J. R JEONG, H. S YOO, W. S |
description | While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence. |
doi_str_mv | 10.1007/s00466-002-0359-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</originalsourceid><addsrcrecordid>eNpFkE1LJDEQhoOssLPqD9hbQPaYtZJO0t1HEb9gxIueQyZdkQw93WMqLeivN-4IeypeeD-Kh7HfEv5KgPaCALS1AkAJaEwv1BFbSd1U1Sv9g61Atp1obWt-sl9EWwBpusas2PSwjCWJebPFUNIb8nlf0i59-JLmic-Rl5SRB5-DJ-Jhnsq8ZOILpemFe07vVHBXzYF72qf8LyZGfMOR-2G7UNnhVPg-zwGHJeMpO45-JDz7vifs-eb66epOrB9v768u1yI0IIvwwfem26g-DFHj4A1EM-BGt12wiHqITS83QQ1RgtIdWCX7TlWB1hoTrW5O2Pmhty6_LkjFbevfU510SllpJPRgq0seXCHPRBmj2-e08_ndSXBfWN0Bq6tY3RdWp2rmz3ezp-DHmP0UEv0P6qZtle2bT0SUeoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510906</pqid></control><display><type>article</type><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><source>Springer Nature</source><creator>CHO, J. R ; JEONG, H. S ; YOO, W. S</creator><creatorcontrib>CHO, J. R ; JEONG, H. S ; YOO, W. S</creatorcontrib><description>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-002-0359-2</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Automobiles ; Computational techniques ; Contours ; Dynamic loads ; Exact sciences and technology ; Finite difference method ; Finite-element and galerkin methods ; Flux density ; Fundamental areas of phenomenology (including applications) ; Maneuverability ; Mathematical methods in physics ; Multiple objective analysis ; Nonlinear analysis ; Optimization ; Optimization techniques ; Physics ; Sensitivity analysis ; Shape ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computational mechanics, 2002-11, Vol.29 (6), p.498-509</ispartof><rights>2003 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2002). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14377269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHO, J. R</creatorcontrib><creatorcontrib>JEONG, H. S</creatorcontrib><creatorcontrib>YOO, W. S</creatorcontrib><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><title>Computational mechanics</title><description>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</description><subject>Automobiles</subject><subject>Computational techniques</subject><subject>Contours</subject><subject>Dynamic loads</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite-element and galerkin methods</subject><subject>Flux density</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Maneuverability</subject><subject>Mathematical methods in physics</subject><subject>Multiple objective analysis</subject><subject>Nonlinear analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Shape</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LJDEQhoOssLPqD9hbQPaYtZJO0t1HEb9gxIueQyZdkQw93WMqLeivN-4IeypeeD-Kh7HfEv5KgPaCALS1AkAJaEwv1BFbSd1U1Sv9g61Atp1obWt-sl9EWwBpusas2PSwjCWJebPFUNIb8nlf0i59-JLmic-Rl5SRB5-DJ-Jhnsq8ZOILpemFe07vVHBXzYF72qf8LyZGfMOR-2G7UNnhVPg-zwGHJeMpO45-JDz7vifs-eb66epOrB9v768u1yI0IIvwwfem26g-DFHj4A1EM-BGt12wiHqITS83QQ1RgtIdWCX7TlWB1hoTrW5O2Pmhty6_LkjFbevfU510SllpJPRgq0seXCHPRBmj2-e08_ndSXBfWN0Bq6tY3RdWp2rmz3ezp-DHmP0UEv0P6qZtle2bT0SUeoU</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>CHO, J. R</creator><creator>JEONG, H. S</creator><creator>YOO, W. S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20021101</creationdate><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><author>CHO, J. R ; JEONG, H. S ; YOO, W. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Automobiles</topic><topic>Computational techniques</topic><topic>Contours</topic><topic>Dynamic loads</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite-element and galerkin methods</topic><topic>Flux density</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Maneuverability</topic><topic>Mathematical methods in physics</topic><topic>Multiple objective analysis</topic><topic>Nonlinear analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Shape</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHO, J. R</creatorcontrib><creatorcontrib>JEONG, H. S</creatorcontrib><creatorcontrib>YOO, W. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHO, J. R</au><au>JEONG, H. S</au><au>YOO, W. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</atitle><jtitle>Computational mechanics</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>29</volume><issue>6</issue><spage>498</spage><epage>509</epage><pages>498-509</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00466-002-0359-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2002-11, Vol.29 (6), p.498-509 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261510906 |
source | Springer Nature |
subjects | Automobiles Computational techniques Contours Dynamic loads Exact sciences and technology Finite difference method Finite-element and galerkin methods Flux density Fundamental areas of phenomenology (including applications) Maneuverability Mathematical methods in physics Multiple objective analysis Nonlinear analysis Optimization Optimization techniques Physics Sensitivity analysis Shape Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20tire%20carcass%20contours%20using%20a%20systematic%20aspiration-level%20adjustment%20procedure&rft.jtitle=Computational%20mechanics&rft.au=CHO,%20J.%20R&rft.date=2002-11-01&rft.volume=29&rft.issue=6&rft.spage=498&rft.epage=509&rft.pages=498-509&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s00466-002-0359-2&rft_dat=%3Cproquest_cross%3E2261510906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261510906&rft_id=info:pmid/&rfr_iscdi=true |