Loading…

Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure

While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durabili...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2002-11, Vol.29 (6), p.498-509
Main Authors: CHO, J. R, JEONG, H. S, YOO, W. S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643
cites
container_end_page 509
container_issue 6
container_start_page 498
container_title Computational mechanics
container_volume 29
creator CHO, J. R
JEONG, H. S
YOO, W. S
description While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.
doi_str_mv 10.1007/s00466-002-0359-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</originalsourceid><addsrcrecordid>eNpFkE1LJDEQhoOssLPqD9hbQPaYtZJO0t1HEb9gxIueQyZdkQw93WMqLeivN-4IeypeeD-Kh7HfEv5KgPaCALS1AkAJaEwv1BFbSd1U1Sv9g61Atp1obWt-sl9EWwBpusas2PSwjCWJebPFUNIb8nlf0i59-JLmic-Rl5SRB5-DJ-Jhnsq8ZOILpemFe07vVHBXzYF72qf8LyZGfMOR-2G7UNnhVPg-zwGHJeMpO45-JDz7vifs-eb66epOrB9v768u1yI0IIvwwfem26g-DFHj4A1EM-BGt12wiHqITS83QQ1RgtIdWCX7TlWB1hoTrW5O2Pmhty6_LkjFbevfU510SllpJPRgq0seXCHPRBmj2-e08_ndSXBfWN0Bq6tY3RdWp2rmz3ezp-DHmP0UEv0P6qZtle2bT0SUeoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510906</pqid></control><display><type>article</type><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><source>Springer Nature</source><creator>CHO, J. R ; JEONG, H. S ; YOO, W. S</creator><creatorcontrib>CHO, J. R ; JEONG, H. S ; YOO, W. S</creatorcontrib><description>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-002-0359-2</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Automobiles ; Computational techniques ; Contours ; Dynamic loads ; Exact sciences and technology ; Finite difference method ; Finite-element and galerkin methods ; Flux density ; Fundamental areas of phenomenology (including applications) ; Maneuverability ; Mathematical methods in physics ; Multiple objective analysis ; Nonlinear analysis ; Optimization ; Optimization techniques ; Physics ; Sensitivity analysis ; Shape ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computational mechanics, 2002-11, Vol.29 (6), p.498-509</ispartof><rights>2003 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2002). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14377269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHO, J. R</creatorcontrib><creatorcontrib>JEONG, H. S</creatorcontrib><creatorcontrib>YOO, W. S</creatorcontrib><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><title>Computational mechanics</title><description>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</description><subject>Automobiles</subject><subject>Computational techniques</subject><subject>Contours</subject><subject>Dynamic loads</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite-element and galerkin methods</subject><subject>Flux density</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Maneuverability</subject><subject>Mathematical methods in physics</subject><subject>Multiple objective analysis</subject><subject>Nonlinear analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Shape</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LJDEQhoOssLPqD9hbQPaYtZJO0t1HEb9gxIueQyZdkQw93WMqLeivN-4IeypeeD-Kh7HfEv5KgPaCALS1AkAJaEwv1BFbSd1U1Sv9g61Atp1obWt-sl9EWwBpusas2PSwjCWJebPFUNIb8nlf0i59-JLmic-Rl5SRB5-DJ-Jhnsq8ZOILpemFe07vVHBXzYF72qf8LyZGfMOR-2G7UNnhVPg-zwGHJeMpO45-JDz7vifs-eb66epOrB9v768u1yI0IIvwwfem26g-DFHj4A1EM-BGt12wiHqITS83QQ1RgtIdWCX7TlWB1hoTrW5O2Pmhty6_LkjFbevfU510SllpJPRgq0seXCHPRBmj2-e08_ndSXBfWN0Bq6tY3RdWp2rmz3ezp-DHmP0UEv0P6qZtle2bT0SUeoU</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>CHO, J. R</creator><creator>JEONG, H. S</creator><creator>YOO, W. S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20021101</creationdate><title>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</title><author>CHO, J. R ; JEONG, H. S ; YOO, W. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Automobiles</topic><topic>Computational techniques</topic><topic>Contours</topic><topic>Dynamic loads</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite-element and galerkin methods</topic><topic>Flux density</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Maneuverability</topic><topic>Mathematical methods in physics</topic><topic>Multiple objective analysis</topic><topic>Nonlinear analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Shape</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHO, J. R</creatorcontrib><creatorcontrib>JEONG, H. S</creatorcontrib><creatorcontrib>YOO, W. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHO, J. R</au><au>JEONG, H. S</au><au>YOO, W. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure</atitle><jtitle>Computational mechanics</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>29</volume><issue>6</issue><spage>498</spage><epage>509</epage><pages>498-509</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>While forming a basic tire configuration and supporting most static and dynamic loads of automobiles, tire carcass influences major tire performances according to its contour. Among significant tire performances, we in this study intend to improve the automobile maneuverability and the tire durability by optimizing the sidewall carcass contour. In order to effectively maximize these multi-objectives, we refine the conventional satisficing trade-off methods (STOM) which were proposed originally for the multi-objective structural optimization, by introducing a systematic aspiration-level adjustment procedure. According to the systematic procedure, we perform the sidewall contour optimization that ideally distributes the sidewall carcass tension and minimizes strain-energy density at the belt edge. Since the tire analysis is highly nonlinear problem we employ an incremental analysis scheme, together with the finite-difference sensitivity scheme. Through the numerical experiment, we confirmed that the refined multi-objective optimization technique systematically leads to a final optimum sidewall contour, together with the stable and rapid convergence.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00466-002-0359-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2002-11, Vol.29 (6), p.498-509
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261510906
source Springer Nature
subjects Automobiles
Computational techniques
Contours
Dynamic loads
Exact sciences and technology
Finite difference method
Finite-element and galerkin methods
Flux density
Fundamental areas of phenomenology (including applications)
Maneuverability
Mathematical methods in physics
Multiple objective analysis
Nonlinear analysis
Optimization
Optimization techniques
Physics
Sensitivity analysis
Shape
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20of%20tire%20carcass%20contours%20using%20a%20systematic%20aspiration-level%20adjustment%20procedure&rft.jtitle=Computational%20mechanics&rft.au=CHO,%20J.%20R&rft.date=2002-11-01&rft.volume=29&rft.issue=6&rft.spage=498&rft.epage=509&rft.pages=498-509&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s00466-002-0359-2&rft_dat=%3Cproquest_cross%3E2261510906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-aca958b29cdf4eda50f5deb478c6ee4df391bc2df102480621982f10e6655f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261510906&rft_id=info:pmid/&rfr_iscdi=true