Loading…
Meshless analysis of piezoelectric devices
The sensor and actuator properties of piezoelectric materials make them well suited for applications in a variety of microelectromechanical systems (MEMS). Simulating the response of piezoelectric devices requires solving coupled electrical and mechanical partial differential equations. In this pape...
Saved in:
Published in: | Computational mechanics 2001-01, Vol.27 (1), p.23-36 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sensor and actuator properties of piezoelectric materials make them well suited for applications in a variety of microelectromechanical systems (MEMS). Simulating the response of piezoelectric devices requires solving coupled electrical and mechanical partial differential equations. In this paper, we have implemented a meshless point collocation method (PCM) to solve the governing equations. Interpolation functions are constructed from a reproducing kernel approximation, and the governing equations are discretized using a collocation approach. PCM is implemented using either a relaxation algorithm or a fully-coupled algorithm. Comparisons between the two algorithms are given. To demonstrate the performance of PCM, the behavior of two static single-layer problems and a piezoelectric bimorph have been modeled. The bimorph analysis is extended to model a prototype MEMS device. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s004660000211 |