Loading…

Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter

This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illumi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2019-08, Vol.19 (16), p.6610-6617
Main Authors: Wang, Yen-Chieh, Jang, Wen-Yea, Huang, Cheng-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63
cites cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63
container_end_page 6617
container_issue 16
container_start_page 6610
container_title IEEE sensors journal
container_volume 19
creator Wang, Yen-Chieh
Jang, Wen-Yea
Huang, Cheng-Sheng
description This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.
doi_str_mv 10.1109/JSEN.2019.2911982
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2261885149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693821</ieee_id><sourcerecordid>2261885149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjuJ7SNUtIDKj2iR4BQ58aa4KnGxUyHenkStuOzO4Zvd0RByDmwEwPTVw_z2acQZ6BHXAFrxAzKALFMJyFQd9lqwJBXy_ZicxLhiHSkzOSAfM7f8bH-wn3Thw_cW6Ryb6AO9MREt9Q01dBqMddi0vWhds6QvGJy3dLp1Fm3y6C3SV4y-MU2FdOLWLYZTclSbdcSz_R6St8ntYnyXzJ6n9-PrWVJxLdoEctXFRgY2U1bVtgRly7zSnEu0UHFmRI0as7RkrGQZSLC8lHldKWFkXeZiSC53dzfBd-ljW6z8NjTdy4LzHJTKINUdBTuqCj7GgHWxCe7LhN8CWNE3WPQNFn2Dxb7BznOx8zhE_OdVroXiIP4AGthsVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261885149</pqid></control><display><type>article</type><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><source>IEEE Xplore (Online service)</source><creator>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</creator><creatorcontrib>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</creatorcontrib><description>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2911982</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Computer simulation ; Deformation ; Displacement measurement ; Finite element method ; Flexing ; Gratings ; guided-mode resonance ; Light sources ; Lightweight ; Linearity ; Medium carbon steels ; optical sensor ; Optical sensors ; Robot sensing systems ; Sensors ; Strain ; subwavelength structure ; Torque ; torque measurement ; Torquemeters ; Wave reflection</subject><ispartof>IEEE sensors journal, 2019-08, Vol.19 (16), p.6610-6617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</citedby><cites>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</cites><orcidid>0000-0002-6292-5100 ; 0000-0002-9938-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Yen-Chieh</creatorcontrib><creatorcontrib>Jang, Wen-Yea</creatorcontrib><creatorcontrib>Huang, Cheng-Sheng</creatorcontrib><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</description><subject>Broadband</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Displacement measurement</subject><subject>Finite element method</subject><subject>Flexing</subject><subject>Gratings</subject><subject>guided-mode resonance</subject><subject>Light sources</subject><subject>Lightweight</subject><subject>Linearity</subject><subject>Medium carbon steels</subject><subject>optical sensor</subject><subject>Optical sensors</subject><subject>Robot sensing systems</subject><subject>Sensors</subject><subject>Strain</subject><subject>subwavelength structure</subject><subject>Torque</subject><subject>torque measurement</subject><subject>Torquemeters</subject><subject>Wave reflection</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjuJ7SNUtIDKj2iR4BQ58aa4KnGxUyHenkStuOzO4Zvd0RByDmwEwPTVw_z2acQZ6BHXAFrxAzKALFMJyFQd9lqwJBXy_ZicxLhiHSkzOSAfM7f8bH-wn3Thw_cW6Ryb6AO9MREt9Q01dBqMddi0vWhds6QvGJy3dLp1Fm3y6C3SV4y-MU2FdOLWLYZTclSbdcSz_R6St8ntYnyXzJ6n9-PrWVJxLdoEctXFRgY2U1bVtgRly7zSnEu0UHFmRI0as7RkrGQZSLC8lHldKWFkXeZiSC53dzfBd-ljW6z8NjTdy4LzHJTKINUdBTuqCj7GgHWxCe7LhN8CWNE3WPQNFn2Dxb7BznOx8zhE_OdVroXiIP4AGthsVw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Wang, Yen-Chieh</creator><creator>Jang, Wen-Yea</creator><creator>Huang, Cheng-Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6292-5100</orcidid><orcidid>https://orcid.org/0000-0002-9938-5881</orcidid></search><sort><creationdate>20190815</creationdate><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><author>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broadband</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Displacement measurement</topic><topic>Finite element method</topic><topic>Flexing</topic><topic>Gratings</topic><topic>guided-mode resonance</topic><topic>Light sources</topic><topic>Lightweight</topic><topic>Linearity</topic><topic>Medium carbon steels</topic><topic>optical sensor</topic><topic>Optical sensors</topic><topic>Robot sensing systems</topic><topic>Sensors</topic><topic>Strain</topic><topic>subwavelength structure</topic><topic>Torque</topic><topic>torque measurement</topic><topic>Torquemeters</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yen-Chieh</creatorcontrib><creatorcontrib>Jang, Wen-Yea</creatorcontrib><creatorcontrib>Huang, Cheng-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yen-Chieh</au><au>Jang, Wen-Yea</au><au>Huang, Cheng-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>19</volume><issue>16</issue><spage>6610</spage><epage>6617</epage><pages>6610-6617</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2911982</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6292-5100</orcidid><orcidid>https://orcid.org/0000-0002-9938-5881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-08, Vol.19 (16), p.6610-6617
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2261885149
source IEEE Xplore (Online service)
subjects Broadband
Computer simulation
Deformation
Displacement measurement
Finite element method
Flexing
Gratings
guided-mode resonance
Light sources
Lightweight
Linearity
Medium carbon steels
optical sensor
Optical sensors
Robot sensing systems
Sensors
Strain
subwavelength structure
Torque
torque measurement
Torquemeters
Wave reflection
title Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Torque%20Sensor%20Based%20on%20a%20Gradient%20Grating%20Period%20Guided-Mode%20Resonance%20Filter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Yen-Chieh&rft.date=2019-08-15&rft.volume=19&rft.issue=16&rft.spage=6610&rft.epage=6617&rft.pages=6610-6617&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2911982&rft_dat=%3Cproquest_ieee_%3E2261885149%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261885149&rft_id=info:pmid/&rft_ieee_id=8693821&rfr_iscdi=true