Loading…
Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter
This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illumi...
Saved in:
Published in: | IEEE sensors journal 2019-08, Vol.19 (16), p.6610-6617 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63 |
container_end_page | 6617 |
container_issue | 16 |
container_start_page | 6610 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Wang, Yen-Chieh Jang, Wen-Yea Huang, Cheng-Sheng |
description | This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm. |
doi_str_mv | 10.1109/JSEN.2019.2911982 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2261885149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693821</ieee_id><sourcerecordid>2261885149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjuJ7SNUtIDKj2iR4BQ58aa4KnGxUyHenkStuOzO4Zvd0RByDmwEwPTVw_z2acQZ6BHXAFrxAzKALFMJyFQd9lqwJBXy_ZicxLhiHSkzOSAfM7f8bH-wn3Thw_cW6Ryb6AO9MREt9Q01dBqMddi0vWhds6QvGJy3dLp1Fm3y6C3SV4y-MU2FdOLWLYZTclSbdcSz_R6St8ntYnyXzJ6n9-PrWVJxLdoEctXFRgY2U1bVtgRly7zSnEu0UHFmRI0as7RkrGQZSLC8lHldKWFkXeZiSC53dzfBd-ljW6z8NjTdy4LzHJTKINUdBTuqCj7GgHWxCe7LhN8CWNE3WPQNFn2Dxb7BznOx8zhE_OdVroXiIP4AGthsVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261885149</pqid></control><display><type>article</type><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><source>IEEE Xplore (Online service)</source><creator>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</creator><creatorcontrib>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</creatorcontrib><description>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2911982</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Computer simulation ; Deformation ; Displacement measurement ; Finite element method ; Flexing ; Gratings ; guided-mode resonance ; Light sources ; Lightweight ; Linearity ; Medium carbon steels ; optical sensor ; Optical sensors ; Robot sensing systems ; Sensors ; Strain ; subwavelength structure ; Torque ; torque measurement ; Torquemeters ; Wave reflection</subject><ispartof>IEEE sensors journal, 2019-08, Vol.19 (16), p.6610-6617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</citedby><cites>FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</cites><orcidid>0000-0002-6292-5100 ; 0000-0002-9938-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Yen-Chieh</creatorcontrib><creatorcontrib>Jang, Wen-Yea</creatorcontrib><creatorcontrib>Huang, Cheng-Sheng</creatorcontrib><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</description><subject>Broadband</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Displacement measurement</subject><subject>Finite element method</subject><subject>Flexing</subject><subject>Gratings</subject><subject>guided-mode resonance</subject><subject>Light sources</subject><subject>Lightweight</subject><subject>Linearity</subject><subject>Medium carbon steels</subject><subject>optical sensor</subject><subject>Optical sensors</subject><subject>Robot sensing systems</subject><subject>Sensors</subject><subject>Strain</subject><subject>subwavelength structure</subject><subject>Torque</subject><subject>torque measurement</subject><subject>Torquemeters</subject><subject>Wave reflection</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjuJ7SNUtIDKj2iR4BQ58aa4KnGxUyHenkStuOzO4Zvd0RByDmwEwPTVw_z2acQZ6BHXAFrxAzKALFMJyFQd9lqwJBXy_ZicxLhiHSkzOSAfM7f8bH-wn3Thw_cW6Ryb6AO9MREt9Q01dBqMddi0vWhds6QvGJy3dLp1Fm3y6C3SV4y-MU2FdOLWLYZTclSbdcSz_R6St8ntYnyXzJ6n9-PrWVJxLdoEctXFRgY2U1bVtgRly7zSnEu0UHFmRI0as7RkrGQZSLC8lHldKWFkXeZiSC53dzfBd-ljW6z8NjTdy4LzHJTKINUdBTuqCj7GgHWxCe7LhN8CWNE3WPQNFn2Dxb7BznOx8zhE_OdVroXiIP4AGthsVw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Wang, Yen-Chieh</creator><creator>Jang, Wen-Yea</creator><creator>Huang, Cheng-Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6292-5100</orcidid><orcidid>https://orcid.org/0000-0002-9938-5881</orcidid></search><sort><creationdate>20190815</creationdate><title>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</title><author>Wang, Yen-Chieh ; Jang, Wen-Yea ; Huang, Cheng-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Broadband</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Displacement measurement</topic><topic>Finite element method</topic><topic>Flexing</topic><topic>Gratings</topic><topic>guided-mode resonance</topic><topic>Light sources</topic><topic>Lightweight</topic><topic>Linearity</topic><topic>Medium carbon steels</topic><topic>optical sensor</topic><topic>Optical sensors</topic><topic>Robot sensing systems</topic><topic>Sensors</topic><topic>Strain</topic><topic>subwavelength structure</topic><topic>Torque</topic><topic>torque measurement</topic><topic>Torquemeters</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yen-Chieh</creatorcontrib><creatorcontrib>Jang, Wen-Yea</creatorcontrib><creatorcontrib>Huang, Cheng-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yen-Chieh</au><au>Jang, Wen-Yea</au><au>Huang, Cheng-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>19</volume><issue>16</issue><spage>6610</spage><epage>6617</epage><pages>6610-6617</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper describes the design, fabrication, and testing of a lightweight and compact torque sensor system based on a gradient grating period guided-mode resonance (GGP-GMR) filter and a flexure-elastic-force-sensing element. The GMR filter exhibits a characteristic resonant reflection, when illuminated with a broadband light source at normal incidence. Instead of a fixed grating period, the GGP-GMR filter consists of grating periods varying from 250 to 550 nm with an increment of 2 nm. Given the flexibility of the plastic-based GGP-GMR filter, it can be bent conform to the cylindrical surface of the flexure. The applied torque induced deformation of the flexure and angular displacement of the attached GGP-GMR. For a stationary light source, the angular displacement of the GGP-GMR filter results in illumination at different locations (grating periods), leading to a shift of the resonant reflection wavelength. The magnitude of shift in the reflection wavelength can be correlated to the magnitude of deformation and the applied torque. In addition, commercial software based on the finite element method was used to simulate the proposed design, which indicates that the flexure made of medium-carbon steel can withstand the torque of 35 Nm without yielding. Furthermore, the simulation results (torque-induced deformation) were consistent with those obtained using the proposed torque sensor system. Torque measurements from 0 to 25 Nm showed good linearity. The limit of detection achieved was 0.77 Nm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2911982</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6292-5100</orcidid><orcidid>https://orcid.org/0000-0002-9938-5881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-08, Vol.19 (16), p.6610-6617 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2261885149 |
source | IEEE Xplore (Online service) |
subjects | Broadband Computer simulation Deformation Displacement measurement Finite element method Flexing Gratings guided-mode resonance Light sources Lightweight Linearity Medium carbon steels optical sensor Optical sensors Robot sensing systems Sensors Strain subwavelength structure Torque torque measurement Torquemeters Wave reflection |
title | Lightweight Torque Sensor Based on a Gradient Grating Period Guided-Mode Resonance Filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Torque%20Sensor%20Based%20on%20a%20Gradient%20Grating%20Period%20Guided-Mode%20Resonance%20Filter&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Yen-Chieh&rft.date=2019-08-15&rft.volume=19&rft.issue=16&rft.spage=6610&rft.epage=6617&rft.pages=6610-6617&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2911982&rft_dat=%3Cproquest_ieee_%3E2261885149%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-168201e01d58d8fdb18db6c9227ed1c20a3fe9e54b00b05171d2b76fc83a7fb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261885149&rft_id=info:pmid/&rft_ieee_id=8693821&rfr_iscdi=true |