Loading…

Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes

In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have...

Full description

Saved in:
Bibliographic Details
Published in:Engineering with computers 2020-10, Vol.36 (4), p.1687-1703
Main Authors: Dehghan, M., Ebrahimi, F., Vinyas, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763
cites cdi_FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763
container_end_page 1703
container_issue 4
container_start_page 1687
container_title Engineering with computers
container_volume 36
creator Dehghan, M.
Ebrahimi, F.
Vinyas, M.
description In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have been derived utilizing Hamilton’s principle. The results of this study have been verified by checking them with antecedent investigations. An analytical solution of governing equations is used to acquire wave frequencies and phase velocities. The Knudsen number is applied to study the effect of slip boundary wall of nanotube and flow. Effect of Knudsen number, different modes, length parameter, nonlocal parameter, fluid velocity, fluid effect and slip boundary condition on wave propagation characteristics of fluid-conveying MEE nanotube is investigated, and the results are presented in detail.
doi_str_mv 10.1007/s00366-019-00790-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262005069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262005069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWD_-AU8LnqOTpJttjlL8goKXiseQZGfrljapSbbQ_97UFbx5eszwe2-GR8gNgzsG0NwnACElBaZoGRXQ-oRM2FTUtJZSnJIJsKahIGVzTi5SWgMwAaAmZPlh9li1fdphTH3wlfs00biMsU-5d6kKXdVthr6lLvg9Hnq_qrZm5TEHiht0OR7VHNnKGx_yYDFdkbPObBJe_-oleX96XM5f6OLt-XX-sKBOMJUpzqS1YmZMW_4yFhrZtQht2TmmmK057yxXqKSxbXHwKQc0DB22ljneSHFJbsfcXQxfA6as12GIvpzUnEsOUINUheIj5WJIKWKnd7HfmnjQDPSxPT22p0t7-qc9XReTGE2pwH6F8S_6H9c3UER0uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262005069</pqid></control><display><type>article</type><title>Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes</title><source>Springer Nature</source><creator>Dehghan, M. ; Ebrahimi, F. ; Vinyas, M.</creator><creatorcontrib>Dehghan, M. ; Ebrahimi, F. ; Vinyas, M.</creatorcontrib><description>In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have been derived utilizing Hamilton’s principle. The results of this study have been verified by checking them with antecedent investigations. An analytical solution of governing equations is used to acquire wave frequencies and phase velocities. The Knudsen number is applied to study the effect of slip boundary wall of nanotube and flow. Effect of Knudsen number, different modes, length parameter, nonlocal parameter, fluid velocity, fluid effect and slip boundary condition on wave propagation characteristics of fluid-conveying MEE nanotube is investigated, and the results are presented in detail.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00790-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Boundary conditions ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Conveying ; Exact solutions ; Investigations ; Math. Applications in Chemistry ; Mathematical analysis ; Mathematical and Computational Engineering ; Nanotubes ; Nonlocal elasticity ; Original Article ; Parameters ; Propagation ; Slip ; Systems Theory ; Wave dispersion ; Wave propagation</subject><ispartof>Engineering with computers, 2020-10, Vol.36 (4), p.1687-1703</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763</citedby><cites>FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Vinyas, M.</creatorcontrib><title>Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have been derived utilizing Hamilton’s principle. The results of this study have been verified by checking them with antecedent investigations. An analytical solution of governing equations is used to acquire wave frequencies and phase velocities. The Knudsen number is applied to study the effect of slip boundary wall of nanotube and flow. Effect of Knudsen number, different modes, length parameter, nonlocal parameter, fluid velocity, fluid effect and slip boundary condition on wave propagation characteristics of fluid-conveying MEE nanotube is investigated, and the results are presented in detail.</description><subject>Boundary conditions</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Conveying</subject><subject>Exact solutions</subject><subject>Investigations</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Nanotubes</subject><subject>Nonlocal elasticity</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Slip</subject><subject>Systems Theory</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWD_-AU8LnqOTpJttjlL8goKXiseQZGfrljapSbbQ_97UFbx5eszwe2-GR8gNgzsG0NwnACElBaZoGRXQ-oRM2FTUtJZSnJIJsKahIGVzTi5SWgMwAaAmZPlh9li1fdphTH3wlfs00biMsU-5d6kKXdVthr6lLvg9Hnq_qrZm5TEHiht0OR7VHNnKGx_yYDFdkbPObBJe_-oleX96XM5f6OLt-XX-sKBOMJUpzqS1YmZMW_4yFhrZtQht2TmmmK057yxXqKSxbXHwKQc0DB22ljneSHFJbsfcXQxfA6as12GIvpzUnEsOUINUheIj5WJIKWKnd7HfmnjQDPSxPT22p0t7-qc9XReTGE2pwH6F8S_6H9c3UER0uw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Dehghan, M.</creator><creator>Ebrahimi, F.</creator><creator>Vinyas, M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20201001</creationdate><title>Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes</title><author>Dehghan, M. ; Ebrahimi, F. ; Vinyas, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Conveying</topic><topic>Exact solutions</topic><topic>Investigations</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Nanotubes</topic><topic>Nonlocal elasticity</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Slip</topic><topic>Systems Theory</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, M.</creatorcontrib><creatorcontrib>Ebrahimi, F.</creatorcontrib><creatorcontrib>Vinyas, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghan, M.</au><au>Ebrahimi, F.</au><au>Vinyas, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>36</volume><issue>4</issue><spage>1687</spage><epage>1703</epage><pages>1687-1703</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have been derived utilizing Hamilton’s principle. The results of this study have been verified by checking them with antecedent investigations. An analytical solution of governing equations is used to acquire wave frequencies and phase velocities. The Knudsen number is applied to study the effect of slip boundary wall of nanotube and flow. Effect of Knudsen number, different modes, length parameter, nonlocal parameter, fluid velocity, fluid effect and slip boundary condition on wave propagation characteristics of fluid-conveying MEE nanotube is investigated, and the results are presented in detail.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00790-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2020-10, Vol.36 (4), p.1687-1703
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2262005069
source Springer Nature
subjects Boundary conditions
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Conveying
Exact solutions
Investigations
Math. Applications in Chemistry
Mathematical analysis
Mathematical and Computational Engineering
Nanotubes
Nonlocal elasticity
Original Article
Parameters
Propagation
Slip
Systems Theory
Wave dispersion
Wave propagation
title Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20dispersion%20characteristics%20of%20fluid-conveying%20magneto-electro-elastic%20nanotubes&rft.jtitle=Engineering%20with%20computers&rft.au=Dehghan,%20M.&rft.date=2020-10-01&rft.volume=36&rft.issue=4&rft.spage=1687&rft.epage=1703&rft.pages=1687-1703&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00790-5&rft_dat=%3Cproquest_cross%3E2262005069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e86bb38aad667ab076fde0dbb3c191b522fb29e96abdc312420ea1ecedb1c2763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262005069&rft_id=info:pmid/&rfr_iscdi=true