Loading…

Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow

The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at...

Full description

Saved in:
Bibliographic Details
Published in:Rheologica acta 2008-12, Vol.47 (9), p.1023-1038
Main Authors: Park, Hee Eon, Lim, Sung Taek, Laun, Hans Martin, Dealy, John M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3
container_end_page 1038
container_issue 9
container_start_page 1023
container_title Rheologica acta
container_volume 47
creator Park, Hee Eon
Lim, Sung Taek
Laun, Hans Martin
Dealy, John M.
description The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity β  ≡ d ln( a P )/ dP decreased slightly with increasing pressure at high pressure. While β from PCRWT data from different laboratories and instruments agreed fairly well, the β values were on average about 2/3 of that from the HPSPR. The CPNCR yields β about 18% lower than that of the HPSPR.
doi_str_mv 10.1007/s00397-008-0296-x
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2262009944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262009944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gLcFz6uzm_2KNyl-QcWLel22yWxJSZu4m9T235vYgqdh3vdhBh5CrjnccgBzlwCy3DAAy0Dkmu1OyITLTDGuhD0lk6FWTCrOz8lFSisAbrQRE_L1hj71Ede46WgTaBsxjTstGgyhKqpjvsa6o9sqFU2quv09LaNf0lA3P3SLMfWJFr6t6trH_V96Sc6CrxNeHeeUfD49fsxe2Pz9-XX2MGctV7pjMii9KMsgSmEL0EZCrsHbTFijwgKzEjOp0SjtwQRUJojcGCMLv7ClDdZnU3JzuNvG5rvH1LlV08fN8NIJoQVAnks5UOJApTZWmyXGf4qDG_25gz83-HOjP7fLfgFBqWSm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262009944</pqid></control><display><type>article</type><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><source>Springer Link</source><creator>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</creator><creatorcontrib>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</creatorcontrib><description>The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity β  ≡ d ln( a P )/ dP decreased slightly with increasing pressure at high pressure. While β from PCRWT data from different laboratories and instruments agreed fairly well, the β values were on average about 2/3 of that from the HPSPR. The CPNCR yields β about 18% lower than that of the HPSPR.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-008-0296-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Capillary flow ; Capillary pressure ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coefficients ; Complex Fluids and Microfluidics ; Flow velocity ; Food Science ; Materials Science ; Mechanical Engineering ; Original Contribution ; Polymer Sciences ; Pressure drop ; Shear rate ; Soft and Granular Matter ; Throttles ; Viscosity</subject><ispartof>Rheologica acta, 2008-12, Vol.47 (9), p.1023-1038</ispartof><rights>Springer-Verlag 2008</rights><rights>Rheologica Acta is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Hee Eon</creatorcontrib><creatorcontrib>Lim, Sung Taek</creatorcontrib><creatorcontrib>Laun, Hans Martin</creatorcontrib><creatorcontrib>Dealy, John M.</creatorcontrib><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity β  ≡ d ln( a P )/ dP decreased slightly with increasing pressure at high pressure. While β from PCRWT data from different laboratories and instruments agreed fairly well, the β values were on average about 2/3 of that from the HPSPR. The CPNCR yields β about 18% lower than that of the HPSPR.</description><subject>Capillary flow</subject><subject>Capillary pressure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coefficients</subject><subject>Complex Fluids and Microfluidics</subject><subject>Flow velocity</subject><subject>Food Science</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Shear rate</subject><subject>Soft and Granular Matter</subject><subject>Throttles</subject><subject>Viscosity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsFZ_gLcFz6uzm_2KNyl-QcWLel22yWxJSZu4m9T235vYgqdh3vdhBh5CrjnccgBzlwCy3DAAy0Dkmu1OyITLTDGuhD0lk6FWTCrOz8lFSisAbrQRE_L1hj71Ede46WgTaBsxjTstGgyhKqpjvsa6o9sqFU2quv09LaNf0lA3P3SLMfWJFr6t6trH_V96Sc6CrxNeHeeUfD49fsxe2Pz9-XX2MGctV7pjMii9KMsgSmEL0EZCrsHbTFijwgKzEjOp0SjtwQRUJojcGCMLv7ClDdZnU3JzuNvG5rvH1LlV08fN8NIJoQVAnks5UOJApTZWmyXGf4qDG_25gz83-HOjP7fLfgFBqWSm</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Park, Hee Eon</creator><creator>Lim, Sung Taek</creator><creator>Laun, Hans Martin</creator><creator>Dealy, John M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081201</creationdate><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><author>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Capillary flow</topic><topic>Capillary pressure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coefficients</topic><topic>Complex Fluids and Microfluidics</topic><topic>Flow velocity</topic><topic>Food Science</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Shear rate</topic><topic>Soft and Granular Matter</topic><topic>Throttles</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hee Eon</creatorcontrib><creatorcontrib>Lim, Sung Taek</creatorcontrib><creatorcontrib>Laun, Hans Martin</creatorcontrib><creatorcontrib>Dealy, John M.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hee Eon</au><au>Lim, Sung Taek</au><au>Laun, Hans Martin</au><au>Dealy, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>47</volume><issue>9</issue><spage>1023</spage><epage>1038</epage><pages>1023-1038</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity β  ≡ d ln( a P )/ dP decreased slightly with increasing pressure at high pressure. While β from PCRWT data from different laboratories and instruments agreed fairly well, the β values were on average about 2/3 of that from the HPSPR. The CPNCR yields β about 18% lower than that of the HPSPR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00397-008-0296-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2008-12, Vol.47 (9), p.1023-1038
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2262009944
source Springer Link
subjects Capillary flow
Capillary pressure
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coefficients
Complex Fluids and Microfluidics
Flow velocity
Food Science
Materials Science
Mechanical Engineering
Original Contribution
Polymer Sciences
Pressure drop
Shear rate
Soft and Granular Matter
Throttles
Viscosity
title Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20pressure%20coefficient%20of%20melt%20viscosity:%20drag%20flow%20versus%20capillary%20flow&rft.jtitle=Rheologica%20acta&rft.au=Park,%20Hee%20Eon&rft.date=2008-12-01&rft.volume=47&rft.issue=9&rft.spage=1023&rft.epage=1038&rft.pages=1023-1038&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-008-0296-x&rft_dat=%3Cproquest_sprin%3E2262009944%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262009944&rft_id=info:pmid/&rfr_iscdi=true