Loading…
Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow
The pressure coefficient of viscosity of poly( α -methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at...
Saved in:
Published in: | Rheologica acta 2008-12, Vol.47 (9), p.1023-1038 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3 |
container_end_page | 1038 |
container_issue | 9 |
container_start_page | 1023 |
container_title | Rheologica acta |
container_volume | 47 |
creator | Park, Hee Eon Lim, Sung Taek Laun, Hans Martin Dealy, John M. |
description | The pressure coefficient of viscosity of poly(
α
-methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity
β
≡
d
ln(
a
P
)/
dP
decreased slightly with increasing pressure at high pressure. While
β
from PCRWT data from different laboratories and instruments agreed fairly well, the
β
values were on average about 2/3 of that from the HPSPR. The CPNCR yields
β
about 18% lower than that of the HPSPR. |
doi_str_mv | 10.1007/s00397-008-0296-x |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2262009944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262009944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gLcFz6uzm_2KNyl-QcWLel22yWxJSZu4m9T235vYgqdh3vdhBh5CrjnccgBzlwCy3DAAy0Dkmu1OyITLTDGuhD0lk6FWTCrOz8lFSisAbrQRE_L1hj71Ede46WgTaBsxjTstGgyhKqpjvsa6o9sqFU2quv09LaNf0lA3P3SLMfWJFr6t6trH_V96Sc6CrxNeHeeUfD49fsxe2Pz9-XX2MGctV7pjMii9KMsgSmEL0EZCrsHbTFijwgKzEjOp0SjtwQRUJojcGCMLv7ClDdZnU3JzuNvG5rvH1LlV08fN8NIJoQVAnks5UOJApTZWmyXGf4qDG_25gz83-HOjP7fLfgFBqWSm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262009944</pqid></control><display><type>article</type><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><source>Springer Link</source><creator>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</creator><creatorcontrib>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</creatorcontrib><description>The pressure coefficient of viscosity of poly(
α
-methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity
β
≡
d
ln(
a
P
)/
dP
decreased slightly with increasing pressure at high pressure. While
β
from PCRWT data from different laboratories and instruments agreed fairly well, the
β
values were on average about 2/3 of that from the HPSPR. The CPNCR yields
β
about 18% lower than that of the HPSPR.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-008-0296-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Capillary flow ; Capillary pressure ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coefficients ; Complex Fluids and Microfluidics ; Flow velocity ; Food Science ; Materials Science ; Mechanical Engineering ; Original Contribution ; Polymer Sciences ; Pressure drop ; Shear rate ; Soft and Granular Matter ; Throttles ; Viscosity</subject><ispartof>Rheologica acta, 2008-12, Vol.47 (9), p.1023-1038</ispartof><rights>Springer-Verlag 2008</rights><rights>Rheologica Acta is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Hee Eon</creatorcontrib><creatorcontrib>Lim, Sung Taek</creatorcontrib><creatorcontrib>Laun, Hans Martin</creatorcontrib><creatorcontrib>Dealy, John M.</creatorcontrib><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>The pressure coefficient of viscosity of poly(
α
-methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity
β
≡
d
ln(
a
P
)/
dP
decreased slightly with increasing pressure at high pressure. While
β
from PCRWT data from different laboratories and instruments agreed fairly well, the
β
values were on average about 2/3 of that from the HPSPR. The CPNCR yields
β
about 18% lower than that of the HPSPR.</description><subject>Capillary flow</subject><subject>Capillary pressure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coefficients</subject><subject>Complex Fluids and Microfluidics</subject><subject>Flow velocity</subject><subject>Food Science</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Pressure drop</subject><subject>Shear rate</subject><subject>Soft and Granular Matter</subject><subject>Throttles</subject><subject>Viscosity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsFZ_gLcFz6uzm_2KNyl-QcWLel22yWxJSZu4m9T235vYgqdh3vdhBh5CrjnccgBzlwCy3DAAy0Dkmu1OyITLTDGuhD0lk6FWTCrOz8lFSisAbrQRE_L1hj71Ede46WgTaBsxjTstGgyhKqpjvsa6o9sqFU2quv09LaNf0lA3P3SLMfWJFr6t6trH_V96Sc6CrxNeHeeUfD49fsxe2Pz9-XX2MGctV7pjMii9KMsgSmEL0EZCrsHbTFijwgKzEjOp0SjtwQRUJojcGCMLv7ClDdZnU3JzuNvG5rvH1LlV08fN8NIJoQVAnks5UOJApTZWmyXGf4qDG_25gz83-HOjP7fLfgFBqWSm</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Park, Hee Eon</creator><creator>Lim, Sung Taek</creator><creator>Laun, Hans Martin</creator><creator>Dealy, John M.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081201</creationdate><title>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</title><author>Park, Hee Eon ; Lim, Sung Taek ; Laun, Hans Martin ; Dealy, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Capillary flow</topic><topic>Capillary pressure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coefficients</topic><topic>Complex Fluids and Microfluidics</topic><topic>Flow velocity</topic><topic>Food Science</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Pressure drop</topic><topic>Shear rate</topic><topic>Soft and Granular Matter</topic><topic>Throttles</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hee Eon</creatorcontrib><creatorcontrib>Lim, Sung Taek</creatorcontrib><creatorcontrib>Laun, Hans Martin</creatorcontrib><creatorcontrib>Dealy, John M.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hee Eon</au><au>Lim, Sung Taek</au><au>Laun, Hans Martin</au><au>Dealy, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>47</volume><issue>9</issue><spage>1023</spage><epage>1038</epage><pages>1023-1038</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>The pressure coefficient of viscosity of poly(
α
-methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity
β
≡
d
ln(
a
P
)/
dP
decreased slightly with increasing pressure at high pressure. While
β
from PCRWT data from different laboratories and instruments agreed fairly well, the
β
values were on average about 2/3 of that from the HPSPR. The CPNCR yields
β
about 18% lower than that of the HPSPR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00397-008-0296-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2008-12, Vol.47 (9), p.1023-1038 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_proquest_journals_2262009944 |
source | Springer Link |
subjects | Capillary flow Capillary pressure Characterization and Evaluation of Materials Chemistry and Materials Science Coefficients Complex Fluids and Microfluidics Flow velocity Food Science Materials Science Mechanical Engineering Original Contribution Polymer Sciences Pressure drop Shear rate Soft and Granular Matter Throttles Viscosity |
title | Measurement of pressure coefficient of melt viscosity: drag flow versus capillary flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20pressure%20coefficient%20of%20melt%20viscosity:%20drag%20flow%20versus%20capillary%20flow&rft.jtitle=Rheologica%20acta&rft.au=Park,%20Hee%20Eon&rft.date=2008-12-01&rft.volume=47&rft.issue=9&rft.spage=1023&rft.epage=1038&rft.pages=1023-1038&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-008-0296-x&rft_dat=%3Cproquest_sprin%3E2262009944%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p156t-4f56bddf2d28c06740960a832875fbe3de346e756a07fe57f297774cab8d8f8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262009944&rft_id=info:pmid/&rfr_iscdi=true |