Loading…

Shear thinning of unentangled flexible polymer liquids

Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit sh...

Full description

Saved in:
Bibliographic Details
Published in:Rheologica acta 2007-05, Vol.46 (5), p.569-575
Main Authors: COLBY, R. H, BORIS, D. C, KRAUSE, W. E, DOU, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523
cites cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523
container_end_page 575
container_issue 5
container_start_page 569
container_title Rheologica acta
container_volume 46
creator COLBY, R. H
BORIS, D. C
KRAUSE, W. E
DOU, S
description Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.
doi_str_mv 10.1007/s00397-006-0142-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262019466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262019466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</originalsourceid><addsrcrecordid>eNpFkE1LwzAcxoMoOKcfwFtBPEbzz2t7lKFTGHhQzyFpkq2jS7ekBfvt7djA03N43uCH0D2QJyBEPWdCWKUwIRIT4BSPF2gGnAkMgpaXaDbZAnMBcI1uct4SAkoqOkPya-NNKvpNE2MT10UXiiH62Ju4br0rQut_G9v6Yt-1486nom0OQ-PyLboKps3-7qxz9PP2-r14x6vP5cfiZYVrJqseOxecCooqDlbZYLlwPBhHSZCBWS9M7SylXilpeQUqGFHyqlbEApfABGVz9HDa3afuMPjc6203pDhdakolJVBxKacUnFJ16nJOPuh9anYmjRqIPuLRJzx6wqOPePQ4dR7PyybXpg3JxLrJ_8WypLQUjP0ByHhlFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262019466</pqid></control><display><type>article</type><title>Shear thinning of unentangled flexible polymer liquids</title><source>Springer Nature</source><creator>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</creator><creatorcontrib>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</creatorcontrib><description>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-006-0142-y</identifier><identifier>CODEN: RHEAAK</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Applied sciences ; Diffusion coefficient ; Diffusion rate ; Exact sciences and technology ; Melts ; Organic polymers ; Physicochemistry of polymers ; Polyelectrolytes ; Polymer melts ; Polymers ; Power law ; Properties and characterization ; REITs ; Relaxation time ; Rheology and viscoelasticity ; Shear rate ; Shear thinning (liquids) ; Solution and gel properties ; Time dependence ; Viscosity</subject><ispartof>Rheologica acta, 2007-05, Vol.46 (5), p.569-575</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</citedby><cites>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18822853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COLBY, R. H</creatorcontrib><creatorcontrib>BORIS, D. C</creatorcontrib><creatorcontrib>KRAUSE, W. E</creatorcontrib><creatorcontrib>DOU, S</creatorcontrib><title>Shear thinning of unentangled flexible polymer liquids</title><title>Rheologica acta</title><description>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</description><subject>Applied sciences</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Exact sciences and technology</subject><subject>Melts</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polyelectrolytes</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>Power law</subject><subject>Properties and characterization</subject><subject>REITs</subject><subject>Relaxation time</subject><subject>Rheology and viscoelasticity</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Solution and gel properties</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LwzAcxoMoOKcfwFtBPEbzz2t7lKFTGHhQzyFpkq2jS7ekBfvt7djA03N43uCH0D2QJyBEPWdCWKUwIRIT4BSPF2gGnAkMgpaXaDbZAnMBcI1uct4SAkoqOkPya-NNKvpNE2MT10UXiiH62Ju4br0rQut_G9v6Yt-1486nom0OQ-PyLboKps3-7qxz9PP2-r14x6vP5cfiZYVrJqseOxecCooqDlbZYLlwPBhHSZCBWS9M7SylXilpeQUqGFHyqlbEApfABGVz9HDa3afuMPjc6203pDhdakolJVBxKacUnFJ16nJOPuh9anYmjRqIPuLRJzx6wqOPePQ4dR7PyybXpg3JxLrJ_8WypLQUjP0ByHhlFg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>COLBY, R. H</creator><creator>BORIS, D. C</creator><creator>KRAUSE, W. E</creator><creator>DOU, S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070501</creationdate><title>Shear thinning of unentangled flexible polymer liquids</title><author>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Exact sciences and technology</topic><topic>Melts</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polyelectrolytes</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>Power law</topic><topic>Properties and characterization</topic><topic>REITs</topic><topic>Relaxation time</topic><topic>Rheology and viscoelasticity</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Solution and gel properties</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COLBY, R. H</creatorcontrib><creatorcontrib>BORIS, D. C</creatorcontrib><creatorcontrib>KRAUSE, W. E</creatorcontrib><creatorcontrib>DOU, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COLBY, R. H</au><au>BORIS, D. C</au><au>KRAUSE, W. E</au><au>DOU, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear thinning of unentangled flexible polymer liquids</atitle><jtitle>Rheologica acta</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>46</volume><issue>5</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><coden>RHEAAK</coden><abstract>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00397-006-0142-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2007-05, Vol.46 (5), p.569-575
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2262019466
source Springer Nature
subjects Applied sciences
Diffusion coefficient
Diffusion rate
Exact sciences and technology
Melts
Organic polymers
Physicochemistry of polymers
Polyelectrolytes
Polymer melts
Polymers
Power law
Properties and characterization
REITs
Relaxation time
Rheology and viscoelasticity
Shear rate
Shear thinning (liquids)
Solution and gel properties
Time dependence
Viscosity
title Shear thinning of unentangled flexible polymer liquids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20thinning%20of%20unentangled%20flexible%20polymer%20liquids&rft.jtitle=Rheologica%20acta&rft.au=COLBY,%20R.%20H&rft.date=2007-05-01&rft.volume=46&rft.issue=5&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=0035-4511&rft.eissn=1435-1528&rft.coden=RHEAAK&rft_id=info:doi/10.1007/s00397-006-0142-y&rft_dat=%3Cproquest_cross%3E2262019466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262019466&rft_id=info:pmid/&rfr_iscdi=true