Loading…
Shear thinning of unentangled flexible polymer liquids
Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit sh...
Saved in:
Published in: | Rheologica acta 2007-05, Vol.46 (5), p.569-575 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523 |
container_end_page | 575 |
container_issue | 5 |
container_start_page | 569 |
container_title | Rheologica acta |
container_volume | 46 |
creator | COLBY, R. H BORIS, D. C KRAUSE, W. E DOU, S |
description | Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics. |
doi_str_mv | 10.1007/s00397-006-0142-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262019466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262019466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</originalsourceid><addsrcrecordid>eNpFkE1LwzAcxoMoOKcfwFtBPEbzz2t7lKFTGHhQzyFpkq2jS7ekBfvt7djA03N43uCH0D2QJyBEPWdCWKUwIRIT4BSPF2gGnAkMgpaXaDbZAnMBcI1uct4SAkoqOkPya-NNKvpNE2MT10UXiiH62Ju4br0rQut_G9v6Yt-1486nom0OQ-PyLboKps3-7qxz9PP2-r14x6vP5cfiZYVrJqseOxecCooqDlbZYLlwPBhHSZCBWS9M7SylXilpeQUqGFHyqlbEApfABGVz9HDa3afuMPjc6203pDhdakolJVBxKacUnFJ16nJOPuh9anYmjRqIPuLRJzx6wqOPePQ4dR7PyybXpg3JxLrJ_8WypLQUjP0ByHhlFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262019466</pqid></control><display><type>article</type><title>Shear thinning of unentangled flexible polymer liquids</title><source>Springer Nature</source><creator>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</creator><creatorcontrib>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</creatorcontrib><description>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-006-0142-y</identifier><identifier>CODEN: RHEAAK</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Applied sciences ; Diffusion coefficient ; Diffusion rate ; Exact sciences and technology ; Melts ; Organic polymers ; Physicochemistry of polymers ; Polyelectrolytes ; Polymer melts ; Polymers ; Power law ; Properties and characterization ; REITs ; Relaxation time ; Rheology and viscoelasticity ; Shear rate ; Shear thinning (liquids) ; Solution and gel properties ; Time dependence ; Viscosity</subject><ispartof>Rheologica acta, 2007-05, Vol.46 (5), p.569-575</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</citedby><cites>FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18822853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COLBY, R. H</creatorcontrib><creatorcontrib>BORIS, D. C</creatorcontrib><creatorcontrib>KRAUSE, W. E</creatorcontrib><creatorcontrib>DOU, S</creatorcontrib><title>Shear thinning of unentangled flexible polymer liquids</title><title>Rheologica acta</title><description>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</description><subject>Applied sciences</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Exact sciences and technology</subject><subject>Melts</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polyelectrolytes</subject><subject>Polymer melts</subject><subject>Polymers</subject><subject>Power law</subject><subject>Properties and characterization</subject><subject>REITs</subject><subject>Relaxation time</subject><subject>Rheology and viscoelasticity</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Solution and gel properties</subject><subject>Time dependence</subject><subject>Viscosity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LwzAcxoMoOKcfwFtBPEbzz2t7lKFTGHhQzyFpkq2jS7ekBfvt7djA03N43uCH0D2QJyBEPWdCWKUwIRIT4BSPF2gGnAkMgpaXaDbZAnMBcI1uct4SAkoqOkPya-NNKvpNE2MT10UXiiH62Ju4br0rQut_G9v6Yt-1486nom0OQ-PyLboKps3-7qxz9PP2-r14x6vP5cfiZYVrJqseOxecCooqDlbZYLlwPBhHSZCBWS9M7SylXilpeQUqGFHyqlbEApfABGVz9HDa3afuMPjc6203pDhdakolJVBxKacUnFJ16nJOPuh9anYmjRqIPuLRJzx6wqOPePQ4dR7PyybXpg3JxLrJ_8WypLQUjP0ByHhlFg</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>COLBY, R. H</creator><creator>BORIS, D. C</creator><creator>KRAUSE, W. E</creator><creator>DOU, S</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070501</creationdate><title>Shear thinning of unentangled flexible polymer liquids</title><author>COLBY, R. H ; BORIS, D. C ; KRAUSE, W. E ; DOU, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Exact sciences and technology</topic><topic>Melts</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polyelectrolytes</topic><topic>Polymer melts</topic><topic>Polymers</topic><topic>Power law</topic><topic>Properties and characterization</topic><topic>REITs</topic><topic>Relaxation time</topic><topic>Rheology and viscoelasticity</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Solution and gel properties</topic><topic>Time dependence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COLBY, R. H</creatorcontrib><creatorcontrib>BORIS, D. C</creatorcontrib><creatorcontrib>KRAUSE, W. E</creatorcontrib><creatorcontrib>DOU, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COLBY, R. H</au><au>BORIS, D. C</au><au>KRAUSE, W. E</au><au>DOU, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear thinning of unentangled flexible polymer liquids</atitle><jtitle>Rheologica acta</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>46</volume><issue>5</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><coden>RHEAAK</coden><abstract>Experimentally, it is well-known that the Rouse model gives a superb description of the concentration dependence of terminal relaxation time, terminal modulus, zero shear-rate viscosity, and diffusion coefficient of semidilute unentangled polyelectrolyte solutions. However, such solutions exhibit shear thinning of the apparent viscosity when the shear rate exceeds the reciprocal of the terminal relaxation time, which is not immediately anticipated by the Rouse model. We present a simple calculation based on the Rouse model for the dependence of the apparent viscosity η on shear rate in steady shear. The derived power law applies to nearly mono- disperse unentangled polymer melts and polymer solutions that have a high enough concentration so that chains overlap, but have low enough concentration that they are not entangled. We find that the predicted power law agrees nicely with data on unentangled polymer melts and semidilute unentangled solutions of polyelectrolytes. The exponent 1/2 means the empirical Cox-Merz rule applies to Rouse chains. This potentially has far-reaching consequences for entangled polymer melts, for which motion of a Rouse chain confined to a tube describes dynamics.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00397-006-0142-y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2007-05, Vol.46 (5), p.569-575 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_proquest_journals_2262019466 |
source | Springer Nature |
subjects | Applied sciences Diffusion coefficient Diffusion rate Exact sciences and technology Melts Organic polymers Physicochemistry of polymers Polyelectrolytes Polymer melts Polymers Power law Properties and characterization REITs Relaxation time Rheology and viscoelasticity Shear rate Shear thinning (liquids) Solution and gel properties Time dependence Viscosity |
title | Shear thinning of unentangled flexible polymer liquids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20thinning%20of%20unentangled%20flexible%20polymer%20liquids&rft.jtitle=Rheologica%20acta&rft.au=COLBY,%20R.%20H&rft.date=2007-05-01&rft.volume=46&rft.issue=5&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=0035-4511&rft.eissn=1435-1528&rft.coden=RHEAAK&rft_id=info:doi/10.1007/s00397-006-0142-y&rft_dat=%3Cproquest_cross%3E2262019466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-ddfd7f72741b7bfb45d4fad20f6f3be5acdb22e776b4917fa5849c70b14613523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262019466&rft_id=info:pmid/&rfr_iscdi=true |