Loading…
The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface
Friction stir processing (FSP) has been applied to modify the surface characteristics of metals. Development of surface composites through FSP has been addressed by different research studies. During the process, generally hard particles are embedded in the soft matrix through stirring. In the curre...
Saved in:
Published in: | International journal of advanced manufacturing technology 2015-04, Vol.77 (9-12), p.2051-2058 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Friction stir processing (FSP) has been applied to modify the surface characteristics of metals. Development of surface composites through FSP has been addressed by different research studies. During the process, generally hard particles are embedded in the soft matrix through stirring. In the current research, surface composites were developed on the surface of AZ91 magnesium base alloy. SiC and Al
2
O
3
particles were embedded separately in the surface and accordingly two kinds of composites were developed. Different characteristics, namely mechanical, tribological, and corrosion behavior, were analyzed. The results showed that mechanical properties as well as strength, hardness, and ductility of FS-processed samples were higher than the as-received one. It was concluded that wear and corrosion resistance of FS-processed samples were higher than the as-received material. The results also indicated that by increment of pass number, the mechanical properties improved, corrosion resistance increased, and wear rate decreased. The results also showed that samples processed using SiC particles had better mechanical characteristics and corrosion resistance than samples processed using Al
2
O
3
particles, although particle type did not have significant effect on wear rate. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-014-6577-x |