Loading…

Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots

Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2016-02, Vol.82 (9-12), p.1675-1682
Main Authors: Yang, Junting, Banerjee, Sriya, Wu, Junnan, Myung, Yoon, Rezvanian, Omid, Banerjee, Parag
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033
cites cdi_FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033
container_end_page 1682
container_issue 9-12
container_start_page 1675
container_title International journal of advanced manufacturing technology
container_volume 82
creator Yang, Junting
Banerjee, Sriya
Wu, Junnan
Myung, Yoon
Rezvanian, Omid
Banerjee, Parag
description Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show the appearance of D (1350 cm −1 ) and G (1597 cm −1 ) bands of graphite besides the characteristic diamond T 2g band at 1332 cm −1 . The graphitic phase extends inside the diamond to a depth of ~ 14 μm. The ratio of the intensities of D and G bands allows an estimate of the graphitic crystallite size. The grain size varies from 10 nm close to the surface to 53 nm near the graphite/diamond interface. On other diamonds, blue shifts in the T 2g peak position are observed indicating the presence of compressive stress. The peak shifts (up to 3.6 cm −1 ) are anisotropic, i.e., along the direction of wire cutting, and are estimated to be 2.9 GPa. It is proposed that the cumulative effect of compressive stresses over multiple cutting events during the sawing process can lead to local graphitization of diamond particles, thus contributing to loss in cutting efficiency.
doi_str_mv 10.1007/s00170-015-7446-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262312215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262312215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-R5OmTdJHGeqEgYL6HNImnRlbU3Nbx_69qVV8Ei5cuOfjcg5Cl4xeM0rlDVDKJCWUFUTmuSCHIzRjOeeEp9MxmtFMKMKlUKfoDGCT2IIJNUP187sBh01rMfTRAWD3GbZD70OLfYutN7uQsJ2vY-hM7H29dYDtEH27_kVJHUzvLN776DCY_QiFBr_45LAOPZyjk8ZswV387Dl6u797XSzJ6unhcXG7IjVXoidMVoblBaVKlabkNm94_T3CVcoVlRCCWVFaUzSVZIqqJLC1dYpKXkrK-RxdTb5dDB-Dg15vwhDb9FJnmcg4yzJWJBabWCkRQHSN7qLfmXjQjOqxSz11qVNxeuxSH5ImmzTQjcFd_HP-X_QF1sZ4Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262312215</pqid></control><display><type>article</type><title>Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots</title><source>Springer Nature</source><creator>Yang, Junting ; Banerjee, Sriya ; Wu, Junnan ; Myung, Yoon ; Rezvanian, Omid ; Banerjee, Parag</creator><creatorcontrib>Yang, Junting ; Banerjee, Sriya ; Wu, Junnan ; Myung, Yoon ; Rezvanian, Omid ; Banerjee, Parag</creatorcontrib><description>Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show the appearance of D (1350 cm −1 ) and G (1597 cm −1 ) bands of graphite besides the characteristic diamond T 2g band at 1332 cm −1 . The graphitic phase extends inside the diamond to a depth of ~ 14 μm. The ratio of the intensities of D and G bands allows an estimate of the graphitic crystallite size. The grain size varies from 10 nm close to the surface to 53 nm near the graphite/diamond interface. On other diamonds, blue shifts in the T 2g peak position are observed indicating the presence of compressive stress. The peak shifts (up to 3.6 cm −1 ) are anisotropic, i.e., along the direction of wire cutting, and are estimated to be 2.9 GPa. It is proposed that the cumulative effect of compressive stresses over multiple cutting events during the sawing process can lead to local graphitization of diamond particles, thus contributing to loss in cutting efficiency.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7446-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Compressive properties ; Computer-Aided Engineering (CAD ; Crystallites ; Cutting ; Diamond films ; Diamond machining ; Diamonds ; Engineering ; Grain size ; Graphite ; Graphitization ; Industrial and Production Engineering ; Ingots ; Mechanical Engineering ; Media Management ; Microparticles ; Original Article ; Raman spectroscopy ; Sawing ; Wire</subject><ispartof>International journal of advanced manufacturing technology, 2016-02, Vol.82 (9-12), p.1675-1682</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033</citedby><cites>FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Junting</creatorcontrib><creatorcontrib>Banerjee, Sriya</creatorcontrib><creatorcontrib>Wu, Junnan</creatorcontrib><creatorcontrib>Myung, Yoon</creatorcontrib><creatorcontrib>Rezvanian, Omid</creatorcontrib><creatorcontrib>Banerjee, Parag</creatorcontrib><title>Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show the appearance of D (1350 cm −1 ) and G (1597 cm −1 ) bands of graphite besides the characteristic diamond T 2g band at 1332 cm −1 . The graphitic phase extends inside the diamond to a depth of ~ 14 μm. The ratio of the intensities of D and G bands allows an estimate of the graphitic crystallite size. The grain size varies from 10 nm close to the surface to 53 nm near the graphite/diamond interface. On other diamonds, blue shifts in the T 2g peak position are observed indicating the presence of compressive stress. The peak shifts (up to 3.6 cm −1 ) are anisotropic, i.e., along the direction of wire cutting, and are estimated to be 2.9 GPa. It is proposed that the cumulative effect of compressive stresses over multiple cutting events during the sawing process can lead to local graphitization of diamond particles, thus contributing to loss in cutting efficiency.</description><subject>CAE) and Design</subject><subject>Compressive properties</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crystallites</subject><subject>Cutting</subject><subject>Diamond films</subject><subject>Diamond machining</subject><subject>Diamonds</subject><subject>Engineering</subject><subject>Grain size</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>Industrial and Production Engineering</subject><subject>Ingots</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microparticles</subject><subject>Original Article</subject><subject>Raman spectroscopy</subject><subject>Sawing</subject><subject>Wire</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-R5OmTdJHGeqEgYL6HNImnRlbU3Nbx_69qVV8Ei5cuOfjcg5Cl4xeM0rlDVDKJCWUFUTmuSCHIzRjOeeEp9MxmtFMKMKlUKfoDGCT2IIJNUP187sBh01rMfTRAWD3GbZD70OLfYutN7uQsJ2vY-hM7H29dYDtEH27_kVJHUzvLN776DCY_QiFBr_45LAOPZyjk8ZswV387Dl6u797XSzJ6unhcXG7IjVXoidMVoblBaVKlabkNm94_T3CVcoVlRCCWVFaUzSVZIqqJLC1dYpKXkrK-RxdTb5dDB-Dg15vwhDb9FJnmcg4yzJWJBabWCkRQHSN7qLfmXjQjOqxSz11qVNxeuxSH5ImmzTQjcFd_HP-X_QF1sZ4Rw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Yang, Junting</creator><creator>Banerjee, Sriya</creator><creator>Wu, Junnan</creator><creator>Myung, Yoon</creator><creator>Rezvanian, Omid</creator><creator>Banerjee, Parag</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160201</creationdate><title>Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots</title><author>Yang, Junting ; Banerjee, Sriya ; Wu, Junnan ; Myung, Yoon ; Rezvanian, Omid ; Banerjee, Parag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CAE) and Design</topic><topic>Compressive properties</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crystallites</topic><topic>Cutting</topic><topic>Diamond films</topic><topic>Diamond machining</topic><topic>Diamonds</topic><topic>Engineering</topic><topic>Grain size</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>Industrial and Production Engineering</topic><topic>Ingots</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microparticles</topic><topic>Original Article</topic><topic>Raman spectroscopy</topic><topic>Sawing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Junting</creatorcontrib><creatorcontrib>Banerjee, Sriya</creatorcontrib><creatorcontrib>Wu, Junnan</creatorcontrib><creatorcontrib>Myung, Yoon</creatorcontrib><creatorcontrib>Rezvanian, Omid</creatorcontrib><creatorcontrib>Banerjee, Parag</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Junting</au><au>Banerjee, Sriya</au><au>Wu, Junnan</au><au>Myung, Yoon</au><au>Rezvanian, Omid</au><au>Banerjee, Parag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>82</volume><issue>9-12</issue><spage>1675</spage><epage>1682</epage><pages>1675-1682</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show the appearance of D (1350 cm −1 ) and G (1597 cm −1 ) bands of graphite besides the characteristic diamond T 2g band at 1332 cm −1 . The graphitic phase extends inside the diamond to a depth of ~ 14 μm. The ratio of the intensities of D and G bands allows an estimate of the graphitic crystallite size. The grain size varies from 10 nm close to the surface to 53 nm near the graphite/diamond interface. On other diamonds, blue shifts in the T 2g peak position are observed indicating the presence of compressive stress. The peak shifts (up to 3.6 cm −1 ) are anisotropic, i.e., along the direction of wire cutting, and are estimated to be 2.9 GPa. It is proposed that the cumulative effect of compressive stresses over multiple cutting events during the sawing process can lead to local graphitization of diamond particles, thus contributing to loss in cutting efficiency.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7446-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2016-02, Vol.82 (9-12), p.1675-1682
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262312215
source Springer Nature
subjects CAE) and Design
Compressive properties
Computer-Aided Engineering (CAD
Crystallites
Cutting
Diamond films
Diamond machining
Diamonds
Engineering
Grain size
Graphite
Graphitization
Industrial and Production Engineering
Ingots
Mechanical Engineering
Media Management
Microparticles
Original Article
Raman spectroscopy
Sawing
Wire
title Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20and%20stress%20evolution%20in%20diamond%20microparticles%20during%20diamond-coated%20wire%20sawing%20of%20Si%20ingots&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Yang,%20Junting&rft.date=2016-02-01&rft.volume=82&rft.issue=9-12&rft.spage=1675&rft.epage=1682&rft.pages=1675-1682&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7446-y&rft_dat=%3Cproquest_cross%3E2262312215%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-17ba14500889a93d4f3cf3cf36eb8e5b6661d69da5fb7180817bdcde807397033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262312215&rft_id=info:pmid/&rfr_iscdi=true