Loading…
The effect of laser beam wobbling mode in welding process for structural steels
A laser welding process using a 30-kW fiber laser with scanning mode optics is investigated in the paper. Welding is conducted in two ways: constant laser beam trajectory and wobbling trajectory with the use of lower speed and power. The main goal was to investigate the influence of the second wobbl...
Saved in:
Published in: | International journal of advanced manufacturing technology 2015-12, Vol.81 (9-12), p.1683-1691 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A laser welding process using a 30-kW fiber laser with scanning mode optics is investigated in the paper. Welding is conducted in two ways: constant laser beam trajectory and wobbling trajectory with the use of lower speed and power. The main goal was to investigate the influence of the second wobbling laser welding pass on microstructure and mechanical properties of structural steel. The following parameters were monitored: visual control and mechanical properties (microhardness, three-point bend, and Charpy impact V-notch test); metallographic analysis and 2D and 3D computer tomography (CT) were also done. The results show that after the second welding pass, with wobbling trajectory of laser beam, middle and cap parts of the seam have a lower microhardness, in relation to the root part. It can be explained by annealing influence of the second wobbling pass at weld metal. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-015-7312-y |