Loading…
Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools
Thermal errors are major contributor to dimensional errors of a part during precision machining. Error compensation is an effective method to reduce thermal errors. Accurate modeling of thermal errors is a prerequisite for thermal error compensation. In this paper, five key temperature points of a c...
Saved in:
Published in: | International journal of advanced manufacturing technology 2016-03, Vol.83 (5-8), p.995-1002 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal errors are major contributor to dimensional errors of a part during precision machining. Error compensation is an effective method to reduce thermal errors. Accurate modeling of thermal errors is a prerequisite for thermal error compensation. In this paper, five key temperature points of a computer numerical control (CNC) machine tool were selected based on grey relational analysis method (GRAM). One thermal error model based on the five key temperature points was proposed using artificial fish swarm and ant colony algorithm-based back-propagation neural network (AFSACA-BPN). AFS is applied to generate initial pheromone value of ACA, which improves the computational efficiency of BPNs and prediction accuracy of thermal error modeling. One thermal error real-time compensation system was developed based on the proposed model. An experiment was carried out to verify the performance of the compensation system. Experiment results show that the diameter error of the workpiece reduced from 23 to 10 μm after compensation. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-015-7660-7 |