Loading…

A tool-path generation strategy for wire and arc additive manufacturing

This paper presents an algorithm to automatically generate optimal tool-paths for the wire and arc additive manufacturing (WAAM) process for a large class of geometries. The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a divide-and-conquer strategy. Then, for eac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2014-07, Vol.73 (1-4), p.173-183
Main Authors: Ding, Donghong, Pan, Zengxi (Stephen), Cuiuri, Dominic, Li, Huijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an algorithm to automatically generate optimal tool-paths for the wire and arc additive manufacturing (WAAM) process for a large class of geometries. The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a divide-and-conquer strategy. Then, for each convex polygon, an optimal scan direction is identified and a continuous tool-path is generated using a combination of zigzag and contour pattern strategies. Finally, all individual sub-paths are connected to form a closed curve. This tool-path generation strategy fulfils the design requirements of WAAM, including simple implementation, a minimized number of starting-stopping points, and high surface accuracy. Compared with the existing hybrid method, the proposed path planning strategy shows better surface accuracy through experiments on a general 3D component.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-014-5808-5