Loading…
Multi-criteria end milling parameters optimization of AISI D2 steel using genetic algorithm
This paper focuses on using multi-criteria optimization approach in the end milling machining process of AISI D2 steel. It aims to minimize the cost caused by a poor surface roughness and the electrical energy consumption during machining. A multi-objective cost function was derived based on the ene...
Saved in:
Published in: | International journal of advanced manufacturing technology 2014-07, Vol.73 (5-8), p.1201-1212 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on using multi-criteria optimization approach in the end milling machining process of AISI D2 steel. It aims to minimize the cost caused by a poor surface roughness and the electrical energy consumption during machining. A multi-objective cost function was derived based on the energy consumption during machining, and the extra machining needed to improve the surface finish. Three machining parameters have been used to derive the cost function: feed, speed, and depth of cut. Regression analysis was used to model the surface roughness and energy consumption, and the cost function was optimized using a genetic algorithm. The optimal solutions for the feed and speed are found and presented in graphs as functions of extra machining and electrical energy cost. Machine operators can use these graphs to run the milling process under optimal conditions. It is found that the optimal values of the feed and speed decrease as the cost of extra machining increases and the optimal machining condition is achieved at a low value of depth of cut. The multi-criteria optimization approach can be applied to investigate the optimal machining parameters of conventional manufacturing processes such as turning, drilling, grinding, and advanced manufacturing processes such as electrical discharge machining. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-014-5921-5 |