Loading…

Study of key algorithms in topology optimization

The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2007-04, Vol.32 (7-8), p.787-796
Main Authors: Zuo, Kong-Tian, Chen, Li-Ping, Zhang, Yun-Qing, Yang, Jingzhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593
cites cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593
container_end_page 796
container_issue 7-8
container_start_page 787
container_title International journal of advanced manufacturing technology
container_volume 32
creator Zuo, Kong-Tian
Chen, Li-Ping
Zhang, Yun-Qing
Yang, Jingzhou
description The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.
doi_str_mv 10.1007/s00170-005-0387-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262476335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262476335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFd_gLeC5-gkaZL2KItfsOBBPYekJmvXtqlJeqi_3iz1MgMzD-8LD0LXBG4JgLyLAEQCBuAYWC0xnKCCVIxhBoSfogKoqDGToj5HFzEeMi2IqAsEb2n-XErvym-7lLrf-9ClryGW3VgmP_ne7_N3St3Q_erU-fESnTndR3v1vzfo4_HhffuMd69PL9v7HW6pZAm7tm6I41zXTnIJFRXctcaa1hiTz87oxja0YYIYBzIDpKKNACsd1azlDdugmzV3Cv5ntjGpg5_DmCsVpYJWUjDGM0VWqg0-xmCdmkI36LAoAuooRq1iVBajjmLy-AMT9VVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262476335</pqid></control><display><type>article</type><title>Study of key algorithms in topology optimization</title><source>Springer Link</source><creator>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</creator><creatorcontrib>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</creatorcontrib><description>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-005-0387-0</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Asymptotes ; Control methods ; Control stability ; Convolution ; Convolution integrals ; Isotropic material ; Iterative methods ; Topology optimization</subject><ispartof>International journal of advanced manufacturing technology, 2007-04, Vol.32 (7-8), p.787-796</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</citedby><cites>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zuo, Kong-Tian</creatorcontrib><creatorcontrib>Chen, Li-Ping</creatorcontrib><creatorcontrib>Zhang, Yun-Qing</creatorcontrib><creatorcontrib>Yang, Jingzhou</creatorcontrib><title>Study of key algorithms in topology optimization</title><title>International journal of advanced manufacturing technology</title><description>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</description><subject>Algorithms</subject><subject>Asymptotes</subject><subject>Control methods</subject><subject>Control stability</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Isotropic material</subject><subject>Iterative methods</subject><subject>Topology optimization</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMoWFd_gLeC5-gkaZL2KItfsOBBPYekJmvXtqlJeqi_3iz1MgMzD-8LD0LXBG4JgLyLAEQCBuAYWC0xnKCCVIxhBoSfogKoqDGToj5HFzEeMi2IqAsEb2n-XErvym-7lLrf-9ClryGW3VgmP_ne7_N3St3Q_erU-fESnTndR3v1vzfo4_HhffuMd69PL9v7HW6pZAm7tm6I41zXTnIJFRXctcaa1hiTz87oxja0YYIYBzIDpKKNACsd1azlDdugmzV3Cv5ntjGpg5_DmCsVpYJWUjDGM0VWqg0-xmCdmkI36LAoAuooRq1iVBajjmLy-AMT9VVa</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Zuo, Kong-Tian</creator><creator>Chen, Li-Ping</creator><creator>Zhang, Yun-Qing</creator><creator>Yang, Jingzhou</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070401</creationdate><title>Study of key algorithms in topology optimization</title><author>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Asymptotes</topic><topic>Control methods</topic><topic>Control stability</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Isotropic material</topic><topic>Iterative methods</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Kong-Tian</creatorcontrib><creatorcontrib>Chen, Li-Ping</creatorcontrib><creatorcontrib>Zhang, Yun-Qing</creatorcontrib><creatorcontrib>Yang, Jingzhou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Kong-Tian</au><au>Chen, Li-Ping</au><au>Zhang, Yun-Qing</au><au>Yang, Jingzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of key algorithms in topology optimization</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>32</volume><issue>7-8</issue><spage>787</spage><epage>796</epage><pages>787-796</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-005-0387-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2007-04, Vol.32 (7-8), p.787-796
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262476335
source Springer Link
subjects Algorithms
Asymptotes
Control methods
Control stability
Convolution
Convolution integrals
Isotropic material
Iterative methods
Topology optimization
title Study of key algorithms in topology optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20key%20algorithms%20in%20topology%20optimization&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zuo,%20Kong-Tian&rft.date=2007-04-01&rft.volume=32&rft.issue=7-8&rft.spage=787&rft.epage=796&rft.pages=787-796&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-005-0387-0&rft_dat=%3Cproquest_cross%3E2262476335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262476335&rft_id=info:pmid/&rfr_iscdi=true