Loading…
Study of key algorithms in topology optimization
The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and...
Saved in:
Published in: | International journal of advanced manufacturing technology 2007-04, Vol.32 (7-8), p.787-796 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593 |
container_end_page | 796 |
container_issue | 7-8 |
container_start_page | 787 |
container_title | International journal of advanced manufacturing technology |
container_volume | 32 |
creator | Zuo, Kong-Tian Chen, Li-Ping Zhang, Yun-Qing Yang, Jingzhou |
description | The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed. |
doi_str_mv | 10.1007/s00170-005-0387-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262476335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262476335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFd_gLeC5-gkaZL2KItfsOBBPYekJmvXtqlJeqi_3iz1MgMzD-8LD0LXBG4JgLyLAEQCBuAYWC0xnKCCVIxhBoSfogKoqDGToj5HFzEeMi2IqAsEb2n-XErvym-7lLrf-9ClryGW3VgmP_ne7_N3St3Q_erU-fESnTndR3v1vzfo4_HhffuMd69PL9v7HW6pZAm7tm6I41zXTnIJFRXctcaa1hiTz87oxja0YYIYBzIDpKKNACsd1azlDdugmzV3Cv5ntjGpg5_DmCsVpYJWUjDGM0VWqg0-xmCdmkI36LAoAuooRq1iVBajjmLy-AMT9VVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262476335</pqid></control><display><type>article</type><title>Study of key algorithms in topology optimization</title><source>Springer Link</source><creator>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</creator><creatorcontrib>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</creatorcontrib><description>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-005-0387-0</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Asymptotes ; Control methods ; Control stability ; Convolution ; Convolution integrals ; Isotropic material ; Iterative methods ; Topology optimization</subject><ispartof>International journal of advanced manufacturing technology, 2007-04, Vol.32 (7-8), p.787-796</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</citedby><cites>FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zuo, Kong-Tian</creatorcontrib><creatorcontrib>Chen, Li-Ping</creatorcontrib><creatorcontrib>Zhang, Yun-Qing</creatorcontrib><creatorcontrib>Yang, Jingzhou</creatorcontrib><title>Study of key algorithms in topology optimization</title><title>International journal of advanced manufacturing technology</title><description>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</description><subject>Algorithms</subject><subject>Asymptotes</subject><subject>Control methods</subject><subject>Control stability</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Isotropic material</subject><subject>Iterative methods</subject><subject>Topology optimization</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMoWFd_gLeC5-gkaZL2KItfsOBBPYekJmvXtqlJeqi_3iz1MgMzD-8LD0LXBG4JgLyLAEQCBuAYWC0xnKCCVIxhBoSfogKoqDGToj5HFzEeMi2IqAsEb2n-XErvym-7lLrf-9ClryGW3VgmP_ne7_N3St3Q_erU-fESnTndR3v1vzfo4_HhffuMd69PL9v7HW6pZAm7tm6I41zXTnIJFRXctcaa1hiTz87oxja0YYIYBzIDpKKNACsd1azlDdugmzV3Cv5ntjGpg5_DmCsVpYJWUjDGM0VWqg0-xmCdmkI36LAoAuooRq1iVBajjmLy-AMT9VVa</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Zuo, Kong-Tian</creator><creator>Chen, Li-Ping</creator><creator>Zhang, Yun-Qing</creator><creator>Yang, Jingzhou</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070401</creationdate><title>Study of key algorithms in topology optimization</title><author>Zuo, Kong-Tian ; Chen, Li-Ping ; Zhang, Yun-Qing ; Yang, Jingzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Asymptotes</topic><topic>Control methods</topic><topic>Control stability</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Isotropic material</topic><topic>Iterative methods</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Kong-Tian</creatorcontrib><creatorcontrib>Chen, Li-Ping</creatorcontrib><creatorcontrib>Zhang, Yun-Qing</creatorcontrib><creatorcontrib>Yang, Jingzhou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Kong-Tian</au><au>Chen, Li-Ping</au><au>Zhang, Yun-Qing</au><au>Yang, Jingzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of key algorithms in topology optimization</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>32</volume><issue>7-8</issue><spage>787</spage><epage>796</epage><pages>787-796</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The theory of topology optimization based on the solid isotropic material with penalization model (SIMP) method is thoroughly analyzed in this paper. In order to solve complicated topology optimization problems, a hybrid solution algorithm based on the method of moving asymptotes (MMA) approach and the globally convergent version of the method of moving asymptotes (GCMMA) approach is proposed. The numerical instability, which always leads to a non-manufacturing result in topology optimization, is analyzed, along with current methods to control it. To eliminate the numerical instability of topology results, a convolution integral factor method is introduced. Meanwhile, an iteration procedure based on the hybrid solution algorithm and a method to eliminate numerical instability are developed. The proposed algorithms are verified with illustrative examples. The effect and function of the hybrid solution algorithm and the convolution radius in optimization are also discussed.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-005-0387-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2007-04, Vol.32 (7-8), p.787-796 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262476335 |
source | Springer Link |
subjects | Algorithms Asymptotes Control methods Control stability Convolution Convolution integrals Isotropic material Iterative methods Topology optimization |
title | Study of key algorithms in topology optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20key%20algorithms%20in%20topology%20optimization&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Zuo,%20Kong-Tian&rft.date=2007-04-01&rft.volume=32&rft.issue=7-8&rft.spage=787&rft.epage=796&rft.pages=787-796&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-005-0387-0&rft_dat=%3Cproquest_cross%3E2262476335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-fc891f55a8f75704265fcbebcbbbf55fba9e929361bf07704142960e7f2a3c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262476335&rft_id=info:pmid/&rfr_iscdi=true |