Loading…

Hybridizing tabu search with ant colony optimization for solving job shop scheduling problems

The manufacturing industry continues to be a prime contributor and it requires an efficient schedule. Scheduling is the allocation of resources to activities over time and it is considered to be a major task done to improve shop-floor productivity. Job shop problem comes under this category and is c...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2009-02, Vol.40 (9-10), p.1004-1015
Main Authors: Eswaramurthy, V. P., Tamilarasi, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The manufacturing industry continues to be a prime contributor and it requires an efficient schedule. Scheduling is the allocation of resources to activities over time and it is considered to be a major task done to improve shop-floor productivity. Job shop problem comes under this category and is combinatorial in nature. Research on optimization of the job shop problem is one of the most significant and promising areas of optimization. This paper presents an application of the global optimization technique called tabu search that is combined with the ant colony optimization technique to solve the job shop scheduling problems. The neighborhoods are selected based on the strategies in the ant colony optimization with dynamic tabu length strategies in the tabu search. The inspiring source of ant colony optimization is pheromone trail that has more influence in selecting the appropriate neighbors to improve the solution. The performance of the algorithm is tested using well-known benchmark problems and is also compared with other algorithms in the literature.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-008-1404-x