Loading…
An intelligent process planning system for prismatic parts using STEP features
This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corr...
Saved in:
Published in: | International journal of advanced manufacturing technology 2007-01, Vol.31 (9-10), p.978-993 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683 |
container_end_page | 993 |
container_issue | 9-10 |
container_start_page | 978 |
container_title | International journal of advanced manufacturing technology |
container_volume | 31 |
creator | Amaitik, Saleh M. Kiliç, S. Engin |
description | This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems. |
doi_str_mv | 10.1007/s00170-005-0269-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262507093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262507093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</originalsourceid><addsrcrecordid>eNotkEtLAzEQgIMoWKs_wFvAc3SS7OZxLKU-oKhgPYfsblK2tLs1kz34702pMDAw8zGPj5B7Do8cQD8hANfAAGoGQllWX5AZr6RkEnh9SWalaJjUylyTG8RdoRVXZkbeFwPthxz2-34bhkyPaWwDIj3u_TD0w5biL-ZwoHFMpdfjwee-pUefMtIJT8DXZvVJY_B5SgFvyVX0ewx3_3lOvp9Xm-UrW3-8vC0Xa9YKLTOLUktjjaq8NrHqNDSNj63qGtHJyqrOl588xMaKYI22uhKCex3AdlKVMHJOHs5zy70_U8DsduOUhrLSCaFEDRqsLBQ_U20aEVOIrrxw8OnXcXAnbe6szRVt7qTN1fIPY91fyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262507093</pqid></control><display><type>article</type><title>An intelligent process planning system for prismatic parts using STEP features</title><source>Springer Nature</source><creator>Amaitik, Saleh M. ; Kiliç, S. Engin</creator><creatorcontrib>Amaitik, Saleh M. ; Kiliç, S. Engin</creatorcontrib><description>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-005-0269-5</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Artificial intelligence ; Artificial neural networks ; Feature recognition ; Fuzzy logic ; Knowledge acquisition ; Machine tools ; Machining ; Neural networks ; Prismatic components ; Process planning</subject><ispartof>International journal of advanced manufacturing technology, 2007-01, Vol.31 (9-10), p.978-993</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</citedby><cites>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Amaitik, Saleh M.</creatorcontrib><creatorcontrib>Kiliç, S. Engin</creatorcontrib><title>An intelligent process planning system for prismatic parts using STEP features</title><title>International journal of advanced manufacturing technology</title><description>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Feature recognition</subject><subject>Fuzzy logic</subject><subject>Knowledge acquisition</subject><subject>Machine tools</subject><subject>Machining</subject><subject>Neural networks</subject><subject>Prismatic components</subject><subject>Process planning</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEQgIMoWKs_wFvAc3SS7OZxLKU-oKhgPYfsblK2tLs1kz34702pMDAw8zGPj5B7Do8cQD8hANfAAGoGQllWX5AZr6RkEnh9SWalaJjUylyTG8RdoRVXZkbeFwPthxz2-34bhkyPaWwDIj3u_TD0w5biL-ZwoHFMpdfjwee-pUefMtIJT8DXZvVJY_B5SgFvyVX0ewx3_3lOvp9Xm-UrW3-8vC0Xa9YKLTOLUktjjaq8NrHqNDSNj63qGtHJyqrOl588xMaKYI22uhKCex3AdlKVMHJOHs5zy70_U8DsduOUhrLSCaFEDRqsLBQ_U20aEVOIrrxw8OnXcXAnbe6szRVt7qTN1fIPY91fyQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Amaitik, Saleh M.</creator><creator>Kiliç, S. Engin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070101</creationdate><title>An intelligent process planning system for prismatic parts using STEP features</title><author>Amaitik, Saleh M. ; Kiliç, S. Engin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Feature recognition</topic><topic>Fuzzy logic</topic><topic>Knowledge acquisition</topic><topic>Machine tools</topic><topic>Machining</topic><topic>Neural networks</topic><topic>Prismatic components</topic><topic>Process planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaitik, Saleh M.</creatorcontrib><creatorcontrib>Kiliç, S. Engin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaitik, Saleh M.</au><au>Kiliç, S. Engin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent process planning system for prismatic parts using STEP features</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>31</volume><issue>9-10</issue><spage>978</spage><epage>993</epage><pages>978-993</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-005-0269-5</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2007-01, Vol.31 (9-10), p.978-993 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2262507093 |
source | Springer Nature |
subjects | Artificial intelligence Artificial neural networks Feature recognition Fuzzy logic Knowledge acquisition Machine tools Machining Neural networks Prismatic components Process planning |
title | An intelligent process planning system for prismatic parts using STEP features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20process%20planning%20system%20for%20prismatic%20parts%20using%20STEP%20features&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Amaitik,%20Saleh%20M.&rft.date=2007-01-01&rft.volume=31&rft.issue=9-10&rft.spage=978&rft.epage=993&rft.pages=978-993&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-005-0269-5&rft_dat=%3Cproquest_cross%3E2262507093%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262507093&rft_id=info:pmid/&rfr_iscdi=true |