Loading…

An intelligent process planning system for prismatic parts using STEP features

This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2007-01, Vol.31 (9-10), p.978-993
Main Authors: Amaitik, Saleh M., Kiliç, S. Engin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683
cites cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683
container_end_page 993
container_issue 9-10
container_start_page 978
container_title International journal of advanced manufacturing technology
container_volume 31
creator Amaitik, Saleh M.
Kiliç, S. Engin
description This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.
doi_str_mv 10.1007/s00170-005-0269-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262507093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262507093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</originalsourceid><addsrcrecordid>eNotkEtLAzEQgIMoWKs_wFvAc3SS7OZxLKU-oKhgPYfsblK2tLs1kz34702pMDAw8zGPj5B7Do8cQD8hANfAAGoGQllWX5AZr6RkEnh9SWalaJjUylyTG8RdoRVXZkbeFwPthxz2-34bhkyPaWwDIj3u_TD0w5biL-ZwoHFMpdfjwee-pUefMtIJT8DXZvVJY_B5SgFvyVX0ewx3_3lOvp9Xm-UrW3-8vC0Xa9YKLTOLUktjjaq8NrHqNDSNj63qGtHJyqrOl588xMaKYI22uhKCex3AdlKVMHJOHs5zy70_U8DsduOUhrLSCaFEDRqsLBQ_U20aEVOIrrxw8OnXcXAnbe6szRVt7qTN1fIPY91fyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262507093</pqid></control><display><type>article</type><title>An intelligent process planning system for prismatic parts using STEP features</title><source>Springer Nature</source><creator>Amaitik, Saleh M. ; Kiliç, S. Engin</creator><creatorcontrib>Amaitik, Saleh M. ; Kiliç, S. Engin</creatorcontrib><description>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-005-0269-5</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Artificial intelligence ; Artificial neural networks ; Feature recognition ; Fuzzy logic ; Knowledge acquisition ; Machine tools ; Machining ; Neural networks ; Prismatic components ; Process planning</subject><ispartof>International journal of advanced manufacturing technology, 2007-01, Vol.31 (9-10), p.978-993</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</citedby><cites>FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Amaitik, Saleh M.</creatorcontrib><creatorcontrib>Kiliç, S. Engin</creatorcontrib><title>An intelligent process planning system for prismatic parts using STEP features</title><title>International journal of advanced manufacturing technology</title><description>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Feature recognition</subject><subject>Fuzzy logic</subject><subject>Knowledge acquisition</subject><subject>Machine tools</subject><subject>Machining</subject><subject>Neural networks</subject><subject>Prismatic components</subject><subject>Process planning</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEQgIMoWKs_wFvAc3SS7OZxLKU-oKhgPYfsblK2tLs1kz34702pMDAw8zGPj5B7Do8cQD8hANfAAGoGQllWX5AZr6RkEnh9SWalaJjUylyTG8RdoRVXZkbeFwPthxz2-34bhkyPaWwDIj3u_TD0w5biL-ZwoHFMpdfjwee-pUefMtIJT8DXZvVJY_B5SgFvyVX0ewx3_3lOvp9Xm-UrW3-8vC0Xa9YKLTOLUktjjaq8NrHqNDSNj63qGtHJyqrOl588xMaKYI22uhKCex3AdlKVMHJOHs5zy70_U8DsduOUhrLSCaFEDRqsLBQ_U20aEVOIrrxw8OnXcXAnbe6szRVt7qTN1fIPY91fyQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Amaitik, Saleh M.</creator><creator>Kiliç, S. Engin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070101</creationdate><title>An intelligent process planning system for prismatic parts using STEP features</title><author>Amaitik, Saleh M. ; Kiliç, S. Engin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Feature recognition</topic><topic>Fuzzy logic</topic><topic>Knowledge acquisition</topic><topic>Machine tools</topic><topic>Machining</topic><topic>Neural networks</topic><topic>Prismatic components</topic><topic>Process planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaitik, Saleh M.</creatorcontrib><creatorcontrib>Kiliç, S. Engin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaitik, Saleh M.</au><au>Kiliç, S. Engin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent process planning system for prismatic parts using STEP features</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>31</volume><issue>9-10</issue><spage>978</spage><epage>993</epage><pages>978-993</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques (neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00170-005-0269-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2007-01, Vol.31 (9-10), p.978-993
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262507093
source Springer Nature
subjects Artificial intelligence
Artificial neural networks
Feature recognition
Fuzzy logic
Knowledge acquisition
Machine tools
Machining
Neural networks
Prismatic components
Process planning
title An intelligent process planning system for prismatic parts using STEP features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20process%20planning%20system%20for%20prismatic%20parts%20using%20STEP%20features&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Amaitik,%20Saleh%20M.&rft.date=2007-01-01&rft.volume=31&rft.issue=9-10&rft.spage=978&rft.epage=993&rft.pages=978-993&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-005-0269-5&rft_dat=%3Cproquest_cross%3E2262507093%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-f37389864a78f4d70bbafc6db2d3496da100a0fb92e987974221a7e09d36d3683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262507093&rft_id=info:pmid/&rfr_iscdi=true