Loading…

A Fuzzy TOPSIS Method for Robot Selection

A fuzzy TOPSIS method for robot selection is proposed, where the ratings of various alternatives versus various subjective criteria and the weights of all criteria are assessed in linguistic terms represented by fuzzy numbers. The values of objective criteria are converted into dimensionless indices...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2003-02, Vol.21 (4), p.284-290
Main Authors: Chu, T.-C., Lin, Y.-C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-94f3acf884f53070d804177e4d2ef404c1922dc39628e044f8b02d3904a3fdf13
cites
container_end_page 290
container_issue 4
container_start_page 284
container_title International journal of advanced manufacturing technology
container_volume 21
creator Chu, T.-C.
Lin, Y.-C.
description A fuzzy TOPSIS method for robot selection is proposed, where the ratings of various alternatives versus various subjective criteria and the weights of all criteria are assessed in linguistic terms represented by fuzzy numbers. The values of objective criteria are converted into dimensionless indices to ensure compatibility between the values of objective criteria and the linguistic ratings of subjective criteria. The membership function of each weighted rating is developed by interval arithmetic of fuzzy numbers. To avoid complicated aggregation of fuzzy numbers, these weighted ratings are defuzzified into crisp values by the ranking method of mean of removals. A closeness coefficient is defined to determine the ranking order of alternatives by calculating the distances to both the ideal and negative- ideal solutions. A numerical example demonstrates the computational process of the proposed method.
doi_str_mv 10.1007/s001700300033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262516991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262516991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-94f3acf884f53070d804177e4d2ef404c1922dc39628e044f8b02d3904a3fdf13</originalsourceid><addsrcrecordid>eNpVkE1PAjEURRujiYgu3Tdx5WL0ta_TaZeECJJgMA6um6EfEYIU25kF_HqH4MbFzd2c3JscQu4ZPDGA6jkDsAoAoQ9ekAETiAUCKy_JALhUBVZSXZObnDc9KZlUA_I4opPueDzQ5eK9ntX0zbdf0dEQE_2Iq9jS2m-9bddxd0uuQrPN_u6vh-Rz8rIcvxbzxXQ2Hs0LyzW2hRYBGxuUEqFEqMApEKyqvHDcBwHCMs25s6glVx6ECGoF3KEG0WBwgeGQPJx39yn-dD63ZhO7tOsvDeeSl0xqfaKKM2VTzDn5YPZp_d2kg2FgTjbMPxv4CzkoThI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262516991</pqid></control><display><type>article</type><title>A Fuzzy TOPSIS Method for Robot Selection</title><source>Springer Link</source><creator>Chu, T.-C. ; Lin, Y.-C.</creator><creatorcontrib>Chu, T.-C. ; Lin, Y.-C.</creatorcontrib><description>A fuzzy TOPSIS method for robot selection is proposed, where the ratings of various alternatives versus various subjective criteria and the weights of all criteria are assessed in linguistic terms represented by fuzzy numbers. The values of objective criteria are converted into dimensionless indices to ensure compatibility between the values of objective criteria and the linguistic ratings of subjective criteria. The membership function of each weighted rating is developed by interval arithmetic of fuzzy numbers. To avoid complicated aggregation of fuzzy numbers, these weighted ratings are defuzzified into crisp values by the ranking method of mean of removals. A closeness coefficient is defined to determine the ranking order of alternatives by calculating the distances to both the ideal and negative- ideal solutions. A numerical example demonstrates the computational process of the proposed method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s001700300033</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Criteria ; Interval arithmetic ; Pareto optimum ; Ranking ; Ratings ; Robots</subject><ispartof>International journal of advanced manufacturing technology, 2003-02, Vol.21 (4), p.284-290</ispartof><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-94f3acf884f53070d804177e4d2ef404c1922dc39628e044f8b02d3904a3fdf13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chu, T.-C.</creatorcontrib><creatorcontrib>Lin, Y.-C.</creatorcontrib><title>A Fuzzy TOPSIS Method for Robot Selection</title><title>International journal of advanced manufacturing technology</title><description>A fuzzy TOPSIS method for robot selection is proposed, where the ratings of various alternatives versus various subjective criteria and the weights of all criteria are assessed in linguistic terms represented by fuzzy numbers. The values of objective criteria are converted into dimensionless indices to ensure compatibility between the values of objective criteria and the linguistic ratings of subjective criteria. The membership function of each weighted rating is developed by interval arithmetic of fuzzy numbers. To avoid complicated aggregation of fuzzy numbers, these weighted ratings are defuzzified into crisp values by the ranking method of mean of removals. A closeness coefficient is defined to determine the ranking order of alternatives by calculating the distances to both the ideal and negative- ideal solutions. A numerical example demonstrates the computational process of the proposed method.</description><subject>Criteria</subject><subject>Interval arithmetic</subject><subject>Pareto optimum</subject><subject>Ranking</subject><subject>Ratings</subject><subject>Robots</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEURRujiYgu3Tdx5WL0ta_TaZeECJJgMA6um6EfEYIU25kF_HqH4MbFzd2c3JscQu4ZPDGA6jkDsAoAoQ9ekAETiAUCKy_JALhUBVZSXZObnDc9KZlUA_I4opPueDzQ5eK9ntX0zbdf0dEQE_2Iq9jS2m-9bddxd0uuQrPN_u6vh-Rz8rIcvxbzxXQ2Hs0LyzW2hRYBGxuUEqFEqMApEKyqvHDcBwHCMs25s6glVx6ECGoF3KEG0WBwgeGQPJx39yn-dD63ZhO7tOsvDeeSl0xqfaKKM2VTzDn5YPZp_d2kg2FgTjbMPxv4CzkoThI</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Chu, T.-C.</creator><creator>Lin, Y.-C.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20030201</creationdate><title>A Fuzzy TOPSIS Method for Robot Selection</title><author>Chu, T.-C. ; Lin, Y.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-94f3acf884f53070d804177e4d2ef404c1922dc39628e044f8b02d3904a3fdf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Criteria</topic><topic>Interval arithmetic</topic><topic>Pareto optimum</topic><topic>Ranking</topic><topic>Ratings</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, T.-C.</creatorcontrib><creatorcontrib>Lin, Y.-C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, T.-C.</au><au>Lin, Y.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fuzzy TOPSIS Method for Robot Selection</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><date>2003-02-01</date><risdate>2003</risdate><volume>21</volume><issue>4</issue><spage>284</spage><epage>290</epage><pages>284-290</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>A fuzzy TOPSIS method for robot selection is proposed, where the ratings of various alternatives versus various subjective criteria and the weights of all criteria are assessed in linguistic terms represented by fuzzy numbers. The values of objective criteria are converted into dimensionless indices to ensure compatibility between the values of objective criteria and the linguistic ratings of subjective criteria. The membership function of each weighted rating is developed by interval arithmetic of fuzzy numbers. To avoid complicated aggregation of fuzzy numbers, these weighted ratings are defuzzified into crisp values by the ranking method of mean of removals. A closeness coefficient is defined to determine the ranking order of alternatives by calculating the distances to both the ideal and negative- ideal solutions. A numerical example demonstrates the computational process of the proposed method.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s001700300033</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2003-02, Vol.21 (4), p.284-290
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2262516991
source Springer Link
subjects Criteria
Interval arithmetic
Pareto optimum
Ranking
Ratings
Robots
title A Fuzzy TOPSIS Method for Robot Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fuzzy%20TOPSIS%20Method%20for%20Robot%20Selection&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Chu,%20T.-C.&rft.date=2003-02-01&rft.volume=21&rft.issue=4&rft.spage=284&rft.epage=290&rft.pages=284-290&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s001700300033&rft_dat=%3Cproquest_cross%3E2262516991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-94f3acf884f53070d804177e4d2ef404c1922dc39628e044f8b02d3904a3fdf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262516991&rft_id=info:pmid/&rfr_iscdi=true