Loading…

Topology optimisation of biphasic adsorbent beds for gas storage

Adsorption is a retention mechanism of fluid molecules on solid surfaces and presents a wide range of applications, such as fuel storage, refrigeration and separation processes. This work describes the modelling of gas adsorption on porous media and presents an optimisation approach for the design o...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization 2018-12, Vol.58 (6), p.2431-2454
Main Authors: Amigo, R. C. R., Prado, D. S., Paiva, J. L., Hewson, R. W., Silva, E. C. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adsorption is a retention mechanism of fluid molecules on solid surfaces and presents a wide range of applications, such as fuel storage, refrigeration and separation processes. This work describes the modelling of gas adsorption on porous media and presents an optimisation approach for the design of adsorption systems based on biphasic adsorbent beds by topology optimisation. A comprehensive formulation for the adsorption phenomenon is presented, detailing the derivation of governing equations and respective weak forms and discretisation for the implementation of the finite element method (FEM). A new topology optimisation material model based on offset hyperbolic tangents is introduced. The derivation of sensitivities is presented in detail, based on a transient adjoint problem. A diverse set of optimised adsorbed natural gas (ANG) tanks, considering real material properties of activated carbon and steel, is presented. Results indicate the suitability of the method in optimising the distribution of phases across adsorbent beds and show that biphasic ANG tanks can perform significantly better than traditional tanks.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-018-2117-x