Loading…
How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths
Aim We mapped the geographical pattern of body sizes in sphingid moths and investigated latitudinal clines. We tested hypotheses concerning their possible environmental control, that is, effects of temperature (negative: temperature size rule or Bergmann's rule; positive: converse Bergmann rule...
Saved in:
Published in: | Journal of biogeography 2019-08, Vol.46 (8), p.1687-1698 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aim
We mapped the geographical pattern of body sizes in sphingid moths and investigated latitudinal clines. We tested hypotheses concerning their possible environmental control, that is, effects of temperature (negative: temperature size rule or Bergmann's rule; positive: converse Bergmann rule), food availability, robustness to starvation during extreme weather and seasonality.
Location
Old World and Australia/Pacific region.
Methods
Body size data of 950 sphingid species were compiled and related to their distribution maps. Focusing on body length, we mapped the median and maximum size of all species occurring in 100 km grid cells. In a comparative approach, we tested the predictions from explanatory hypotheses by correlating species' size to the average environmental conditions encountered throughout their range, under univariate and multivariate models. We accounted for phylogeny by stepwise inclusion of phylogenetically informed taxonomic classifications into hierarchical random‐intercept mixed models.
Results
Median body sizes showed a distinctive geographical pattern, with large species in the Middle East and the Asian tropics, and smaller species in temperate regions and the Afrotropics. Absolute latitude explained very little body size variation, but there was a latitudinal cline of maximum size. Species' median size was correlated with net primary productivity, supporting the food availability hypothesis, whereas support for other hypotheses was weak. Environmental correlations contributed much less (i.e. 70% of variability).
Main conclusion
The intuitive impression of larger species in the tropics is shaped by larger size maxima. Median body sizes are only very weakly related to latitude. Most of the geographical variation in body size in sphingid moths is explained by their phylogenetic past. NPP and forest cover correlate positively with the body size, which supports the idea that food availability allowed the evolution of larger sizes. |
---|---|
ISSN: | 0305-0270 1365-2699 |
DOI: | 10.1111/jbi.13583 |