Loading…
Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array
ZnO nanorod arrays (NRAs) were prepared via a facile hydrothermal method for photoelectrochemical (PEC) applications. Then, ZnS thin shell layers were deposited onto them via a facile hydrothermal treatment process for constructing a ZnO/ZnS core/shell structure. It was demonstrated that the PEC act...
Saved in:
Published in: | Optoelectronics letters 2019-07, Vol.15 (4), p.241-244 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanorod arrays (NRAs) were prepared via a facile hydrothermal method for photoelectrochemical (PEC) applications. Then, ZnS thin shell layers were deposited onto them via a facile hydrothermal treatment process for constructing a ZnO/ZnS core/shell structure. It was demonstrated that the PEC activity of a ZnO NRA is enhanced significantly after the surface modification, although there weren’t any obvious changes in the visible-light harvesting efficiency. Both the Nyquist and Mott-Schottky (M-S) plots were employed to reveal the reason, which was attributed to higher electrocatalytic activity of ZnS than that of ZnO and the resulting higher charge transfer efficiency across the solid/liquid interfaces. Finally, a schematic band model was proposed for clarifying the charge carrier transfer mechanism occurred at the interfaces. |
---|---|
ISSN: | 1673-1905 1993-5013 |
DOI: | 10.1007/s11801-019-8162-x |