Loading…

Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion

Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24O31Cl10 photocatalyst (Bi24O31Cl10‐OV) for fine‐tuning the p...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2019-06, Vol.12 (12), p.2740-2747
Main Authors: Jin, Xiaoli, Lv, Chade, Zhou, Xin, Ye, Liqun, Xie, Haiquan, Liu, Yue, Su, Huan, Zhang, Biao, Chen, Gang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2747
container_issue 12
container_start_page 2740
container_title ChemSusChem
container_volume 12
creator Jin, Xiaoli
Lv, Chade
Zhou, Xin
Ye, Liqun
Xie, Haiquan
Liu, Yue
Su, Huan
Zhang, Biao
Chen, Gang
description Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24O31Cl10 photocatalyst (Bi24O31Cl10‐OV) for fine‐tuning the photocatalytic efficiency. The formation of oxygen vacancies leads to a new donor level near the conduction band minimum, which enables a faster charge transfer and higher carrier density. Moreover, oxygen vacancies can considerably reduce the energy for the formation of COOH* intermediates during CO2 conversion. As a result, the activity of Bi24O31Cl10‐OV for selective photoreduction of CO2 to CO is significantly improved, with a CO generation rate of 0.9 μmol h−1 g−1, which is nearly 4 times higher than that of pristine Bi24O31Cl10. This study reinforces our understanding of defect engineering in Bi‐based photocatalysts and underscores the potential importance of implanting oxygen vacancies as an effective strategy for solar energy conversion. Triple boost! The high abundance of oxygen vacancies in Bi24O31Cl10 play the following three roles for fully optimizing the CO2 conversion efficiency: (i) enhance charge density, (ii) improve separation of electron–hole pairs, and (iii) lower energy for the formation of intermediates during the process.
doi_str_mv 10.1002/cssc.201900621
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2265602419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265602419</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3361-e76e7a7c9f8d30305012dc77a61a018fbbd86a6296ed599c9b9440e36ca4335c3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKe3Xge87jz5aNpcujI_YFChKt6FLE1rR01m0qn9925MdnXeAw_vCw9C1wRmBIDemhjNjAKRAIKSEzQhueBJKvj76TEzco4uYlzvEJBCTFBV_o6tdfhNG-3MiBeu7Zy1oXMt9g2ed5SXjBQ9Adz4gOfex8HW-PnDD97oQffj0BlclBQX3n3bEDvvLtFZo_tor_7vFL3eL16Kx2RZPjwVd8ukZUyQxGbCZjozsslrBgxSILQ2WaYF0UDyZrWqc6EFlcLWqZRGriTnYJkwmjOWGjZFN4feTfBfWxsHtfbb4HaTilKRCqCcyB0lD9RP19tRbUL3qcOoCKi9NbW3po7WVFFVxfFjf8glYW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265602419</pqid></control><display><type>article</type><title>Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion</title><source>Wiley</source><creator>Jin, Xiaoli ; Lv, Chade ; Zhou, Xin ; Ye, Liqun ; Xie, Haiquan ; Liu, Yue ; Su, Huan ; Zhang, Biao ; Chen, Gang</creator><creatorcontrib>Jin, Xiaoli ; Lv, Chade ; Zhou, Xin ; Ye, Liqun ; Xie, Haiquan ; Liu, Yue ; Su, Huan ; Zhang, Biao ; Chen, Gang</creatorcontrib><description>Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24O31Cl10 photocatalyst (Bi24O31Cl10‐OV) for fine‐tuning the photocatalytic efficiency. The formation of oxygen vacancies leads to a new donor level near the conduction band minimum, which enables a faster charge transfer and higher carrier density. Moreover, oxygen vacancies can considerably reduce the energy for the formation of COOH* intermediates during CO2 conversion. As a result, the activity of Bi24O31Cl10‐OV for selective photoreduction of CO2 to CO is significantly improved, with a CO generation rate of 0.9 μmol h−1 g−1, which is nearly 4 times higher than that of pristine Bi24O31Cl10. This study reinforces our understanding of defect engineering in Bi‐based photocatalysts and underscores the potential importance of implanting oxygen vacancies as an effective strategy for solar energy conversion. Triple boost! The high abundance of oxygen vacancies in Bi24O31Cl10 play the following three roles for fully optimizing the CO2 conversion efficiency: (i) enhance charge density, (ii) improve separation of electron–hole pairs, and (iii) lower energy for the formation of intermediates during the process.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201900621</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bi24O31Cl10 ; Carbon dioxide ; Carbon monoxide ; Carrier density ; Charge transfer ; CO generation ; CO2 reduction ; Conduction bands ; Current carriers ; Oxygen ; oxygen vacancies ; Photocatalysis ; Photocatalysts ; Photochemistry ; Solar energy conversion ; Vacancies</subject><ispartof>ChemSusChem, 2019-06, Vol.12 (12), p.2740-2747</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1502-0330 ; 0000-0002-0964-1037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Lv, Chade</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Xie, Haiquan</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Su, Huan</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion</title><title>ChemSusChem</title><description>Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24O31Cl10 photocatalyst (Bi24O31Cl10‐OV) for fine‐tuning the photocatalytic efficiency. The formation of oxygen vacancies leads to a new donor level near the conduction band minimum, which enables a faster charge transfer and higher carrier density. Moreover, oxygen vacancies can considerably reduce the energy for the formation of COOH* intermediates during CO2 conversion. As a result, the activity of Bi24O31Cl10‐OV for selective photoreduction of CO2 to CO is significantly improved, with a CO generation rate of 0.9 μmol h−1 g−1, which is nearly 4 times higher than that of pristine Bi24O31Cl10. This study reinforces our understanding of defect engineering in Bi‐based photocatalysts and underscores the potential importance of implanting oxygen vacancies as an effective strategy for solar energy conversion. Triple boost! The high abundance of oxygen vacancies in Bi24O31Cl10 play the following three roles for fully optimizing the CO2 conversion efficiency: (i) enhance charge density, (ii) improve separation of electron–hole pairs, and (iii) lower energy for the formation of intermediates during the process.</description><subject>Bi24O31Cl10</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carrier density</subject><subject>Charge transfer</subject><subject>CO generation</subject><subject>CO2 reduction</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemistry</subject><subject>Solar energy conversion</subject><subject>Vacancies</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKe3Xge87jz5aNpcujI_YFChKt6FLE1rR01m0qn9925MdnXeAw_vCw9C1wRmBIDemhjNjAKRAIKSEzQhueBJKvj76TEzco4uYlzvEJBCTFBV_o6tdfhNG-3MiBeu7Zy1oXMt9g2ed5SXjBQ9Adz4gOfex8HW-PnDD97oQffj0BlclBQX3n3bEDvvLtFZo_tor_7vFL3eL16Kx2RZPjwVd8ukZUyQxGbCZjozsslrBgxSILQ2WaYF0UDyZrWqc6EFlcLWqZRGriTnYJkwmjOWGjZFN4feTfBfWxsHtfbb4HaTilKRCqCcyB0lD9RP19tRbUL3qcOoCKi9NbW3po7WVFFVxfFjf8glYW4</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Jin, Xiaoli</creator><creator>Lv, Chade</creator><creator>Zhou, Xin</creator><creator>Ye, Liqun</creator><creator>Xie, Haiquan</creator><creator>Liu, Yue</creator><creator>Su, Huan</creator><creator>Zhang, Biao</creator><creator>Chen, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-1502-0330</orcidid><orcidid>https://orcid.org/0000-0002-0964-1037</orcidid></search><sort><creationdate>20190621</creationdate><title>Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion</title><author>Jin, Xiaoli ; Lv, Chade ; Zhou, Xin ; Ye, Liqun ; Xie, Haiquan ; Liu, Yue ; Su, Huan ; Zhang, Biao ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3361-e76e7a7c9f8d30305012dc77a61a018fbbd86a6296ed599c9b9440e36ca4335c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bi24O31Cl10</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carrier density</topic><topic>Charge transfer</topic><topic>CO generation</topic><topic>CO2 reduction</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemistry</topic><topic>Solar energy conversion</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Lv, Chade</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Xie, Haiquan</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Su, Huan</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiaoli</au><au>Lv, Chade</au><au>Zhou, Xin</au><au>Ye, Liqun</au><au>Xie, Haiquan</au><au>Liu, Yue</au><au>Su, Huan</au><au>Zhang, Biao</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion</atitle><jtitle>ChemSusChem</jtitle><date>2019-06-21</date><risdate>2019</risdate><volume>12</volume><issue>12</issue><spage>2740</spage><epage>2747</epage><pages>2740-2747</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24O31Cl10 photocatalyst (Bi24O31Cl10‐OV) for fine‐tuning the photocatalytic efficiency. The formation of oxygen vacancies leads to a new donor level near the conduction band minimum, which enables a faster charge transfer and higher carrier density. Moreover, oxygen vacancies can considerably reduce the energy for the formation of COOH* intermediates during CO2 conversion. As a result, the activity of Bi24O31Cl10‐OV for selective photoreduction of CO2 to CO is significantly improved, with a CO generation rate of 0.9 μmol h−1 g−1, which is nearly 4 times higher than that of pristine Bi24O31Cl10. This study reinforces our understanding of defect engineering in Bi‐based photocatalysts and underscores the potential importance of implanting oxygen vacancies as an effective strategy for solar energy conversion. Triple boost! The high abundance of oxygen vacancies in Bi24O31Cl10 play the following three roles for fully optimizing the CO2 conversion efficiency: (i) enhance charge density, (ii) improve separation of electron–hole pairs, and (iii) lower energy for the formation of intermediates during the process.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cssc.201900621</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1502-0330</orcidid><orcidid>https://orcid.org/0000-0002-0964-1037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2019-06, Vol.12 (12), p.2740-2747
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_journals_2265602419
source Wiley
subjects Bi24O31Cl10
Carbon dioxide
Carbon monoxide
Carrier density
Charge transfer
CO generation
CO2 reduction
Conduction bands
Current carriers
Oxygen
oxygen vacancies
Photocatalysis
Photocatalysts
Photochemistry
Solar energy conversion
Vacancies
title Oxygen Vacancy Engineering of Bi24O31Cl10 for Boosted Photocatalytic CO2 Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Vacancy%20Engineering%20of%20Bi24O31Cl10%20for%20Boosted%20Photocatalytic%20CO2%20Conversion&rft.jtitle=ChemSusChem&rft.au=Jin,%20Xiaoli&rft.date=2019-06-21&rft.volume=12&rft.issue=12&rft.spage=2740&rft.epage=2747&rft.pages=2740-2747&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201900621&rft_dat=%3Cproquest_wiley%3E2265602419%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3361-e76e7a7c9f8d30305012dc77a61a018fbbd86a6296ed599c9b9440e36ca4335c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265602419&rft_id=info:pmid/&rfr_iscdi=true