Loading…
Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation
Hyperspectral imaging provides detailed information about the scanned objects, as it captures their spectral characteristics within a large number of wavelength bands. Classification of such data has become an active research topic due to its wide applicability in a variety of fields. Deep learning...
Saved in:
Published in: | arXiv.org 2019-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nalepa, Jakub Tulczyjew, Lukasz Myller, Michal Kawulok, Michal |
description | Hyperspectral imaging provides detailed information about the scanned objects, as it captures their spectral characteristics within a large number of wavelength bands. Classification of such data has become an active research topic due to its wide applicability in a variety of fields. Deep learning has established the state of the art in the area, and it constitutes the current research mainstream. In this letter, we introduce a new spectral-spatial convolutional neural network, benefitting from a battery of data augmentation techniques which help deal with a real-life problem of lacking ground-truth training data. Our rigorous experiments showed that the proposed method outperforms other spectral-spatial techniques from the literature, and delivers precise hyperspectral classification in real time. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2266671223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266671223</sourcerecordid><originalsourceid>FETCH-proquest_journals_22666712233</originalsourceid><addsrcrecordid>eNqNj8EKwjAQRIMgKOo_BDwX2tRGr1IVvXhpxWMJstbUNqnZROnfmxY_wNNjd2Z2mRGZsjiOgs2KsQlZIFZhGDK-ZkkST0mXQdmAslKV9Ni1YLCFmzWipqdGlID0gr2U_bZB1gorvZpq9da1s1IrP53BmQH2o80T6VXaB82NkMqHg1w2QHfCCrp1wzPRx-ZkfBc1wuLHGVke9nl6DFqjXw7QFpV2xl_HgjHO-Tpivsd_ri9KMU7f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266671223</pqid></control><display><type>article</type><title>Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation</title><source>Publicly Available Content Database</source><creator>Nalepa, Jakub ; Tulczyjew, Lukasz ; Myller, Michal ; Kawulok, Michal</creator><creatorcontrib>Nalepa, Jakub ; Tulczyjew, Lukasz ; Myller, Michal ; Kawulok, Michal</creatorcontrib><description>Hyperspectral imaging provides detailed information about the scanned objects, as it captures their spectral characteristics within a large number of wavelength bands. Classification of such data has become an active research topic due to its wide applicability in a variety of fields. Deep learning has established the state of the art in the area, and it constitutes the current research mainstream. In this letter, we introduce a new spectral-spatial convolutional neural network, benefitting from a battery of data augmentation techniques which help deal with a real-life problem of lacking ground-truth training data. Our rigorous experiments showed that the proposed method outperforms other spectral-spatial techniques from the literature, and delivers precise hyperspectral classification in real time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Data augmentation ; Hyperspectral imaging ; Machine learning ; Neural networks ; Spectra ; Training</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2266671223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Tulczyjew, Lukasz</creatorcontrib><creatorcontrib>Myller, Michal</creatorcontrib><creatorcontrib>Kawulok, Michal</creatorcontrib><title>Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation</title><title>arXiv.org</title><description>Hyperspectral imaging provides detailed information about the scanned objects, as it captures their spectral characteristics within a large number of wavelength bands. Classification of such data has become an active research topic due to its wide applicability in a variety of fields. Deep learning has established the state of the art in the area, and it constitutes the current research mainstream. In this letter, we introduce a new spectral-spatial convolutional neural network, benefitting from a battery of data augmentation techniques which help deal with a real-life problem of lacking ground-truth training data. Our rigorous experiments showed that the proposed method outperforms other spectral-spatial techniques from the literature, and delivers precise hyperspectral classification in real time.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data augmentation</subject><subject>Hyperspectral imaging</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Spectra</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNj8EKwjAQRIMgKOo_BDwX2tRGr1IVvXhpxWMJstbUNqnZROnfmxY_wNNjd2Z2mRGZsjiOgs2KsQlZIFZhGDK-ZkkST0mXQdmAslKV9Ni1YLCFmzWipqdGlID0gr2U_bZB1gorvZpq9da1s1IrP53BmQH2o80T6VXaB82NkMqHg1w2QHfCCrp1wzPRx-ZkfBc1wuLHGVke9nl6DFqjXw7QFpV2xl_HgjHO-Tpivsd_ri9KMU7f</recordid><startdate>20190727</startdate><enddate>20190727</enddate><creator>Nalepa, Jakub</creator><creator>Tulczyjew, Lukasz</creator><creator>Myller, Michal</creator><creator>Kawulok, Michal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190727</creationdate><title>Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation</title><author>Nalepa, Jakub ; Tulczyjew, Lukasz ; Myller, Michal ; Kawulok, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22666712233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data augmentation</topic><topic>Hyperspectral imaging</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Spectra</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Nalepa, Jakub</creatorcontrib><creatorcontrib>Tulczyjew, Lukasz</creatorcontrib><creatorcontrib>Myller, Michal</creatorcontrib><creatorcontrib>Kawulok, Michal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalepa, Jakub</au><au>Tulczyjew, Lukasz</au><au>Myller, Michal</au><au>Kawulok, Michal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation</atitle><jtitle>arXiv.org</jtitle><date>2019-07-27</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Hyperspectral imaging provides detailed information about the scanned objects, as it captures their spectral characteristics within a large number of wavelength bands. Classification of such data has become an active research topic due to its wide applicability in a variety of fields. Deep learning has established the state of the art in the area, and it constitutes the current research mainstream. In this letter, we introduce a new spectral-spatial convolutional neural network, benefitting from a battery of data augmentation techniques which help deal with a real-life problem of lacking ground-truth training data. Our rigorous experiments showed that the proposed method outperforms other spectral-spatial techniques from the literature, and delivers precise hyperspectral classification in real time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2266671223 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Classification Data augmentation Hyperspectral imaging Machine learning Neural networks Spectra Training |
title | Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Segmenting%20Hyperspectral%20Images%20Using%20Spectral-Spatial%20Convolutional%20Neural%20Networks%20With%20Training-Time%20Data%20Augmentation&rft.jtitle=arXiv.org&rft.au=Nalepa,%20Jakub&rft.date=2019-07-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2266671223%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22666712233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266671223&rft_id=info:pmid/&rfr_iscdi=true |