Loading…
Probabilistic frontier regression models for binary type output data
This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in te...
Saved in:
Published in: | Journal of applied statistics 2019-10, Vol.46 (13), p.2460-2480 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2019.1597838 |