Loading…

Probabilistic frontier regression models for binary type output data

This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in te...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics 2019-10, Vol.46 (13), p.2460-2480
Main Authors: Badade, Meena, Ramanathan, T. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893
cites cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893
container_end_page 2480
container_issue 13
container_start_page 2460
container_title Journal of applied statistics
container_volume 46
creator Badade, Meena
Ramanathan, T. V.
description This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.
doi_str_mv 10.1080/02664763.2019.1597838
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267421562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267421562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-ghBw3TGX5tKdMl5hQBe6DkmaSIZOU5MUmbe3Zcatq7M4338uHwDXGK0wkugWEc5rwemKINysMGuEpPIELDDlqEKMklOwmJlqhs7BRc5bhJDEjC7Aw3uKRpvQhVyChT7FvgSXYHJfyeUcYg93sXVdhj4maEKv0x6W_eBgHMswFtjqoi_BmddddlfHugSfT48f65dq8_b8ur7fVJZSWSrBrDGIGWla71FDTIO4cEIaxB1l3NpaGMKd5h5JK0xt7NTE3hPX-trLhi7BzWHukOL36HJR2zimflqpCOGiJphxMlHsQNkUc07OqyGF3XS3wkjNwtSfMDULU0dhU-7ukAv99OtO_8TUtarofReTT7q3ISv6_4hfJMVzPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267421562</pqid></control><display><type>article</type><title>Probabilistic frontier regression models for binary type output data</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Badade, Meena ; Ramanathan, T. V.</creator><creatorcontrib>Badade, Meena ; Ramanathan, T. V.</creatorcontrib><description>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2019.1597838</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Binary type output data ; Computer simulation ; Decision making ; probabilistic frontier regression models ; Public sector ; Reduction ; Regression models ; Statistical analysis ; Statistical methods ; technical efficiency</subject><ispartof>Journal of applied statistics, 2019-10, Vol.46 (13), p.2460-2480</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</citedby><cites>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Badade, Meena</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><title>Probabilistic frontier regression models for binary type output data</title><title>Journal of applied statistics</title><description>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</description><subject>Binary type output data</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>probabilistic frontier regression models</subject><subject>Public sector</subject><subject>Reduction</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>technical efficiency</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-ghBw3TGX5tKdMl5hQBe6DkmaSIZOU5MUmbe3Zcatq7M4338uHwDXGK0wkugWEc5rwemKINysMGuEpPIELDDlqEKMklOwmJlqhs7BRc5bhJDEjC7Aw3uKRpvQhVyChT7FvgSXYHJfyeUcYg93sXVdhj4maEKv0x6W_eBgHMswFtjqoi_BmddddlfHugSfT48f65dq8_b8ur7fVJZSWSrBrDGIGWla71FDTIO4cEIaxB1l3NpaGMKd5h5JK0xt7NTE3hPX-trLhi7BzWHukOL36HJR2zimflqpCOGiJphxMlHsQNkUc07OqyGF3XS3wkjNwtSfMDULU0dhU-7ukAv99OtO_8TUtarofReTT7q3ISv6_4hfJMVzPA</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Badade, Meena</creator><creator>Ramanathan, T. V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191003</creationdate><title>Probabilistic frontier regression models for binary type output data</title><author>Badade, Meena ; Ramanathan, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary type output data</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>probabilistic frontier regression models</topic><topic>Public sector</topic><topic>Reduction</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>technical efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badade, Meena</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badade, Meena</au><au>Ramanathan, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic frontier regression models for binary type output data</atitle><jtitle>Journal of applied statistics</jtitle><date>2019-10-03</date><risdate>2019</risdate><volume>46</volume><issue>13</issue><spage>2460</spage><epage>2480</epage><pages>2460-2480</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2019.1597838</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2019-10, Vol.46 (13), p.2460-2480
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_2267421562
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); Business Source Ultimate (EBSCOHost)
subjects Binary type output data
Computer simulation
Decision making
probabilistic frontier regression models
Public sector
Reduction
Regression models
Statistical analysis
Statistical methods
technical efficiency
title Probabilistic frontier regression models for binary type output data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20frontier%20regression%20models%20for%20binary%20type%20output%20data&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Badade,%20Meena&rft.date=2019-10-03&rft.volume=46&rft.issue=13&rft.spage=2460&rft.epage=2480&rft.pages=2460-2480&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2019.1597838&rft_dat=%3Cproquest_cross%3E2267421562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267421562&rft_id=info:pmid/&rfr_iscdi=true