Loading…
Probabilistic frontier regression models for binary type output data
This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in te...
Saved in:
Published in: | Journal of applied statistics 2019-10, Vol.46 (13), p.2460-2480 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893 |
container_end_page | 2480 |
container_issue | 13 |
container_start_page | 2460 |
container_title | Journal of applied statistics |
container_volume | 46 |
creator | Badade, Meena Ramanathan, T. V. |
description | This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least. |
doi_str_mv | 10.1080/02664763.2019.1597838 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267421562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267421562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-ghBw3TGX5tKdMl5hQBe6DkmaSIZOU5MUmbe3Zcatq7M4338uHwDXGK0wkugWEc5rwemKINysMGuEpPIELDDlqEKMklOwmJlqhs7BRc5bhJDEjC7Aw3uKRpvQhVyChT7FvgSXYHJfyeUcYg93sXVdhj4maEKv0x6W_eBgHMswFtjqoi_BmddddlfHugSfT48f65dq8_b8ur7fVJZSWSrBrDGIGWla71FDTIO4cEIaxB1l3NpaGMKd5h5JK0xt7NTE3hPX-trLhi7BzWHukOL36HJR2zimflqpCOGiJphxMlHsQNkUc07OqyGF3XS3wkjNwtSfMDULU0dhU-7ukAv99OtO_8TUtarofReTT7q3ISv6_4hfJMVzPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267421562</pqid></control><display><type>article</type><title>Probabilistic frontier regression models for binary type output data</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Badade, Meena ; Ramanathan, T. V.</creator><creatorcontrib>Badade, Meena ; Ramanathan, T. V.</creatorcontrib><description>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2019.1597838</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Binary type output data ; Computer simulation ; Decision making ; probabilistic frontier regression models ; Public sector ; Reduction ; Regression models ; Statistical analysis ; Statistical methods ; technical efficiency</subject><ispartof>Journal of applied statistics, 2019-10, Vol.46 (13), p.2460-2480</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</citedby><cites>FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Badade, Meena</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><title>Probabilistic frontier regression models for binary type output data</title><title>Journal of applied statistics</title><description>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</description><subject>Binary type output data</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>probabilistic frontier regression models</subject><subject>Public sector</subject><subject>Reduction</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>technical efficiency</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-ghBw3TGX5tKdMl5hQBe6DkmaSIZOU5MUmbe3Zcatq7M4338uHwDXGK0wkugWEc5rwemKINysMGuEpPIELDDlqEKMklOwmJlqhs7BRc5bhJDEjC7Aw3uKRpvQhVyChT7FvgSXYHJfyeUcYg93sXVdhj4maEKv0x6W_eBgHMswFtjqoi_BmddddlfHugSfT48f65dq8_b8ur7fVJZSWSrBrDGIGWla71FDTIO4cEIaxB1l3NpaGMKd5h5JK0xt7NTE3hPX-trLhi7BzWHukOL36HJR2zimflqpCOGiJphxMlHsQNkUc07OqyGF3XS3wkjNwtSfMDULU0dhU-7ukAv99OtO_8TUtarofReTT7q3ISv6_4hfJMVzPA</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Badade, Meena</creator><creator>Ramanathan, T. V.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191003</creationdate><title>Probabilistic frontier regression models for binary type output data</title><author>Badade, Meena ; Ramanathan, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary type output data</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>probabilistic frontier regression models</topic><topic>Public sector</topic><topic>Reduction</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>technical efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badade, Meena</creatorcontrib><creatorcontrib>Ramanathan, T. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badade, Meena</au><au>Ramanathan, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic frontier regression models for binary type output data</atitle><jtitle>Journal of applied statistics</jtitle><date>2019-10-03</date><risdate>2019</risdate><volume>46</volume><issue>13</issue><spage>2460</spage><epage>2480</epage><pages>2460-2480</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>This paper proposes a probabilistic frontier regression model for binary type output data in a production process setup. We consider one of the two categories of outputs as 'selected' category and the reduction in probability of falling in this category is attributed to the reduction in technical efficiency (TE) of the decision-making unit. An efficiency measure is proposed to determine the deviations of individual units from the probabilistic frontier. Simulation results show that the average estimated TE component is close to its true value. An application of the proposed method to the data related to the Indian public sector banking system is provided where the output variable is the indicator of level of non-performing assets. Individual TE is obtained for each of the banks under consideration. Among the public sector banks, Andhra bank is found to be the most efficient, whereas the United Bank of India is the least.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02664763.2019.1597838</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2019-10, Vol.46 (13), p.2460-2480 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_proquest_journals_2267421562 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); Business Source Ultimate (EBSCOHost) |
subjects | Binary type output data Computer simulation Decision making probabilistic frontier regression models Public sector Reduction Regression models Statistical analysis Statistical methods technical efficiency |
title | Probabilistic frontier regression models for binary type output data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20frontier%20regression%20models%20for%20binary%20type%20output%20data&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Badade,%20Meena&rft.date=2019-10-03&rft.volume=46&rft.issue=13&rft.spage=2460&rft.epage=2480&rft.pages=2460-2480&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2019.1597838&rft_dat=%3Cproquest_cross%3E2267421562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-75cbb05b8bdff092b9067e78b06e356cc47b26ea6f08c7b4bce781ff2edf4f893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267421562&rft_id=info:pmid/&rfr_iscdi=true |