Loading…

Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application

In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2019-10, Vol.48 (10), p.6666-6674
Main Authors: Xiong, Shanxin, Yang, Nana, Zhang, Xiangkai, Wang, Ru, Lu, Yizhang, Li, Haifu, Liu, Jian, Li, Shuai, Qiu, Zhu, Wu, Bohua, Chu, Jia, Wang, Xiaoqin, Zhang, Runlan, Gong, Ming, Chen, Zhenming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3
cites cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3
container_end_page 6674
container_issue 10
container_start_page 6666
container_title Journal of electronic materials
container_volume 48
creator Xiong, Shanxin
Yang, Nana
Zhang, Xiangkai
Wang, Ru
Lu, Yizhang
Li, Haifu
Liu, Jian
Li, Shuai
Qiu, Zhu
Wu, Bohua
Chu, Jia
Wang, Xiaoqin
Zhang, Runlan
Gong, Ming
Chen, Zhenming
description In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO 2 composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO 2 composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO 2 composites and PANI-NF are 751 F g −1 and 180 F g −1 at 0.2 A g −1 in Na 2 SO 4 solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO 2 that resulted from the interfacial synthesis method.
doi_str_mv 10.1007/s11664-019-07469-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267588059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267588059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhoNY8Gp9AVcB1-PNmcwkk6VcqxVsFWzRXcjNnGhkbjImGam-Q9-5o7fQXVcHDv_3__ARcgTsBBiTywwgRFMxUBWTjVDV2w5ZQNvwCjpxv0sWjAuo2pq3e2Q_5yfGoIUOFuT3rd9MQzEB45TpTcLRJFN8DDQ6ehOHVxP84APS7yZE59eY8vKbCQ8zkJGe-fjL90hXcTPG7Atmagotj0gvQ8HkjMX3nms_LO_M_KAuJno7jZisGY31xb8gPR3HwduP0c_kkzNDxsO_94D8PP_yY_W1urq-uFydXlWWgypVx7npeiEBnWESkdWAohamh1bW1jYtqqZjHJxaK2WlWjeKMQtS9IA9SMcPyPG2d0zxecJc9FOcUpgndV0L2XYda9Wcqrcpm2LOCZ0ek9-Y9KqB6Xfteqtdz9r1h3b9NkN8C-U5HB4w_av-D_UHabmJAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267588059</pqid></control><display><type>article</type><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><source>Springer Nature</source><creator>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</creator><creatorcontrib>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</creatorcontrib><description>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO 2 composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO 2 composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO 2 composites and PANI-NF are 751 F g −1 and 180 F g −1 at 0.2 A g −1 in Na 2 SO 4 solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO 2 that resulted from the interfacial synthesis method.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07469-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Crystal structure ; Electronics and Microelectronics ; Instrumentation ; Manganese dioxide ; Materials Science ; Monomers ; Morphology ; Nanofibers ; Optical and Electronic Materials ; Oxidation ; Polyanilines ; Polymerization ; Potassium ; Potassium permanganate ; Scanning electron microscopy ; Sodium sulfate ; Solid State Physics ; Strong interactions (field theory)</subject><ispartof>Journal of electronic materials, 2019-10, Vol.48 (10), p.6666-6674</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</citedby><cites>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</cites><orcidid>0000-0002-6293-3872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiong, Shanxin</creatorcontrib><creatorcontrib>Yang, Nana</creatorcontrib><creatorcontrib>Zhang, Xiangkai</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Lu, Yizhang</creatorcontrib><creatorcontrib>Li, Haifu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Qiu, Zhu</creatorcontrib><creatorcontrib>Wu, Bohua</creatorcontrib><creatorcontrib>Chu, Jia</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Zhang, Runlan</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Chen, Zhenming</creatorcontrib><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO 2 composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO 2 composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO 2 composites and PANI-NF are 751 F g −1 and 180 F g −1 at 0.2 A g −1 in Na 2 SO 4 solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO 2 that resulted from the interfacial synthesis method.</description><subject>Aniline</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Potassium</subject><subject>Potassium permanganate</subject><subject>Scanning electron microscopy</subject><subject>Sodium sulfate</subject><subject>Solid State Physics</subject><subject>Strong interactions (field theory)</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKHTEUhoNY8Gp9AVcB1-PNmcwkk6VcqxVsFWzRXcjNnGhkbjImGam-Q9-5o7fQXVcHDv_3__ARcgTsBBiTywwgRFMxUBWTjVDV2w5ZQNvwCjpxv0sWjAuo2pq3e2Q_5yfGoIUOFuT3rd9MQzEB45TpTcLRJFN8DDQ6ehOHVxP84APS7yZE59eY8vKbCQ8zkJGe-fjL90hXcTPG7Atmagotj0gvQ8HkjMX3nms_LO_M_KAuJno7jZisGY31xb8gPR3HwduP0c_kkzNDxsO_94D8PP_yY_W1urq-uFydXlWWgypVx7npeiEBnWESkdWAohamh1bW1jYtqqZjHJxaK2WlWjeKMQtS9IA9SMcPyPG2d0zxecJc9FOcUpgndV0L2XYda9Wcqrcpm2LOCZ0ek9-Y9KqB6Xfteqtdz9r1h3b9NkN8C-U5HB4w_av-D_UHabmJAQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xiong, Shanxin</creator><creator>Yang, Nana</creator><creator>Zhang, Xiangkai</creator><creator>Wang, Ru</creator><creator>Lu, Yizhang</creator><creator>Li, Haifu</creator><creator>Liu, Jian</creator><creator>Li, Shuai</creator><creator>Qiu, Zhu</creator><creator>Wu, Bohua</creator><creator>Chu, Jia</creator><creator>Wang, Xiaoqin</creator><creator>Zhang, Runlan</creator><creator>Gong, Ming</creator><creator>Chen, Zhenming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-6293-3872</orcidid></search><sort><creationdate>20191001</creationdate><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><author>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aniline</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Potassium</topic><topic>Potassium permanganate</topic><topic>Scanning electron microscopy</topic><topic>Sodium sulfate</topic><topic>Solid State Physics</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Shanxin</creatorcontrib><creatorcontrib>Yang, Nana</creatorcontrib><creatorcontrib>Zhang, Xiangkai</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Lu, Yizhang</creatorcontrib><creatorcontrib>Li, Haifu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Qiu, Zhu</creatorcontrib><creatorcontrib>Wu, Bohua</creatorcontrib><creatorcontrib>Chu, Jia</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Zhang, Runlan</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Chen, Zhenming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Shanxin</au><au>Yang, Nana</au><au>Zhang, Xiangkai</au><au>Wang, Ru</au><au>Lu, Yizhang</au><au>Li, Haifu</au><au>Liu, Jian</au><au>Li, Shuai</au><au>Qiu, Zhu</au><au>Wu, Bohua</au><au>Chu, Jia</au><au>Wang, Xiaoqin</au><au>Zhang, Runlan</au><au>Gong, Ming</au><au>Chen, Zhenming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>48</volume><issue>10</issue><spage>6666</spage><epage>6674</epage><pages>6666-6674</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO 2 composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO 2 composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO 2 composites and PANI-NF are 751 F g −1 and 180 F g −1 at 0.2 A g −1 in Na 2 SO 4 solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO 2 that resulted from the interfacial synthesis method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07469-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6293-3872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2019-10, Vol.48 (10), p.6666-6674
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2267588059
source Springer Nature
subjects Aniline
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composite materials
Crystal structure
Electronics and Microelectronics
Instrumentation
Manganese dioxide
Materials Science
Monomers
Morphology
Nanofibers
Optical and Electronic Materials
Oxidation
Polyanilines
Polymerization
Potassium
Potassium permanganate
Scanning electron microscopy
Sodium sulfate
Solid State Physics
Strong interactions (field theory)
title Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Preparation%20of%20Polyaniline%20Nanofibers/Manganese%20Dioxide%20Composites%20at%20the%20Interface%20of%20Oil/Water%20for%20Supercapacitive%20Application&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xiong,%20Shanxin&rft.date=2019-10-01&rft.volume=48&rft.issue=10&rft.spage=6666&rft.epage=6674&rft.pages=6666-6674&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07469-z&rft_dat=%3Cproquest_cross%3E2267588059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267588059&rft_id=info:pmid/&rfr_iscdi=true