Loading…
Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application
In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO 2 ) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO 2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate...
Saved in:
Published in: | Journal of electronic materials 2019-10, Vol.48 (10), p.6666-6674 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3 |
container_end_page | 6674 |
container_issue | 10 |
container_start_page | 6666 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Xiong, Shanxin Yang, Nana Zhang, Xiangkai Wang, Ru Lu, Yizhang Li, Haifu Liu, Jian Li, Shuai Qiu, Zhu Wu, Bohua Chu, Jia Wang, Xiaoqin Zhang, Runlan Gong, Ming Chen, Zhenming |
description | In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO
2
) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO
2
were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO
2
composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO
2
composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO
2
composites and PANI-NF are 751 F g
−1
and 180 F g
−1
at 0.2 A g
−1
in Na
2
SO
4
solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO
2
that resulted from the interfacial synthesis method. |
doi_str_mv | 10.1007/s11664-019-07469-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267588059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267588059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhoNY8Gp9AVcB1-PNmcwkk6VcqxVsFWzRXcjNnGhkbjImGam-Q9-5o7fQXVcHDv_3__ARcgTsBBiTywwgRFMxUBWTjVDV2w5ZQNvwCjpxv0sWjAuo2pq3e2Q_5yfGoIUOFuT3rd9MQzEB45TpTcLRJFN8DDQ6ehOHVxP84APS7yZE59eY8vKbCQ8zkJGe-fjL90hXcTPG7Atmagotj0gvQ8HkjMX3nms_LO_M_KAuJno7jZisGY31xb8gPR3HwduP0c_kkzNDxsO_94D8PP_yY_W1urq-uFydXlWWgypVx7npeiEBnWESkdWAohamh1bW1jYtqqZjHJxaK2WlWjeKMQtS9IA9SMcPyPG2d0zxecJc9FOcUpgndV0L2XYda9Wcqrcpm2LOCZ0ek9-Y9KqB6Xfteqtdz9r1h3b9NkN8C-U5HB4w_av-D_UHabmJAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267588059</pqid></control><display><type>article</type><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><source>Springer Nature</source><creator>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</creator><creatorcontrib>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</creatorcontrib><description>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO
2
) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO
2
were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO
2
composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO
2
composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO
2
composites and PANI-NF are 751 F g
−1
and 180 F g
−1
at 0.2 A g
−1
in Na
2
SO
4
solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO
2
that resulted from the interfacial synthesis method.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07469-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Crystal structure ; Electronics and Microelectronics ; Instrumentation ; Manganese dioxide ; Materials Science ; Monomers ; Morphology ; Nanofibers ; Optical and Electronic Materials ; Oxidation ; Polyanilines ; Polymerization ; Potassium ; Potassium permanganate ; Scanning electron microscopy ; Sodium sulfate ; Solid State Physics ; Strong interactions (field theory)</subject><ispartof>Journal of electronic materials, 2019-10, Vol.48 (10), p.6666-6674</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</citedby><cites>FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</cites><orcidid>0000-0002-6293-3872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiong, Shanxin</creatorcontrib><creatorcontrib>Yang, Nana</creatorcontrib><creatorcontrib>Zhang, Xiangkai</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Lu, Yizhang</creatorcontrib><creatorcontrib>Li, Haifu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Qiu, Zhu</creatorcontrib><creatorcontrib>Wu, Bohua</creatorcontrib><creatorcontrib>Chu, Jia</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Zhang, Runlan</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Chen, Zhenming</creatorcontrib><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO
2
) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO
2
were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO
2
composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO
2
composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO
2
composites and PANI-NF are 751 F g
−1
and 180 F g
−1
at 0.2 A g
−1
in Na
2
SO
4
solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO
2
that resulted from the interfacial synthesis method.</description><subject>Aniline</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Potassium</subject><subject>Potassium permanganate</subject><subject>Scanning electron microscopy</subject><subject>Sodium sulfate</subject><subject>Solid State Physics</subject><subject>Strong interactions (field theory)</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKHTEUhoNY8Gp9AVcB1-PNmcwkk6VcqxVsFWzRXcjNnGhkbjImGam-Q9-5o7fQXVcHDv_3__ARcgTsBBiTywwgRFMxUBWTjVDV2w5ZQNvwCjpxv0sWjAuo2pq3e2Q_5yfGoIUOFuT3rd9MQzEB45TpTcLRJFN8DDQ6ehOHVxP84APS7yZE59eY8vKbCQ8zkJGe-fjL90hXcTPG7Atmagotj0gvQ8HkjMX3nms_LO_M_KAuJno7jZisGY31xb8gPR3HwduP0c_kkzNDxsO_94D8PP_yY_W1urq-uFydXlWWgypVx7npeiEBnWESkdWAohamh1bW1jYtqqZjHJxaK2WlWjeKMQtS9IA9SMcPyPG2d0zxecJc9FOcUpgndV0L2XYda9Wcqrcpm2LOCZ0ek9-Y9KqB6Xfteqtdz9r1h3b9NkN8C-U5HB4w_av-D_UHabmJAQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Xiong, Shanxin</creator><creator>Yang, Nana</creator><creator>Zhang, Xiangkai</creator><creator>Wang, Ru</creator><creator>Lu, Yizhang</creator><creator>Li, Haifu</creator><creator>Liu, Jian</creator><creator>Li, Shuai</creator><creator>Qiu, Zhu</creator><creator>Wu, Bohua</creator><creator>Chu, Jia</creator><creator>Wang, Xiaoqin</creator><creator>Zhang, Runlan</creator><creator>Gong, Ming</creator><creator>Chen, Zhenming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-6293-3872</orcidid></search><sort><creationdate>20191001</creationdate><title>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</title><author>Xiong, Shanxin ; Yang, Nana ; Zhang, Xiangkai ; Wang, Ru ; Lu, Yizhang ; Li, Haifu ; Liu, Jian ; Li, Shuai ; Qiu, Zhu ; Wu, Bohua ; Chu, Jia ; Wang, Xiaoqin ; Zhang, Runlan ; Gong, Ming ; Chen, Zhenming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aniline</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Potassium</topic><topic>Potassium permanganate</topic><topic>Scanning electron microscopy</topic><topic>Sodium sulfate</topic><topic>Solid State Physics</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Shanxin</creatorcontrib><creatorcontrib>Yang, Nana</creatorcontrib><creatorcontrib>Zhang, Xiangkai</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Lu, Yizhang</creatorcontrib><creatorcontrib>Li, Haifu</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Qiu, Zhu</creatorcontrib><creatorcontrib>Wu, Bohua</creatorcontrib><creatorcontrib>Chu, Jia</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Zhang, Runlan</creatorcontrib><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Chen, Zhenming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Shanxin</au><au>Yang, Nana</au><au>Zhang, Xiangkai</au><au>Wang, Ru</au><au>Lu, Yizhang</au><au>Li, Haifu</au><au>Liu, Jian</au><au>Li, Shuai</au><au>Qiu, Zhu</au><au>Wu, Bohua</au><au>Chu, Jia</au><au>Wang, Xiaoqin</au><au>Zhang, Runlan</au><au>Gong, Ming</au><au>Chen, Zhenming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>48</volume><issue>10</issue><spage>6666</spage><epage>6674</epage><pages>6666-6674</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO
2
) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO
2
were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO
2
composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO
2
composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO
2
composites and PANI-NF are 751 F g
−1
and 180 F g
−1
at 0.2 A g
−1
in Na
2
SO
4
solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO
2
that resulted from the interfacial synthesis method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07469-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6293-3872</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-10, Vol.48 (10), p.6666-6674 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2267588059 |
source | Springer Nature |
subjects | Aniline Characterization and Evaluation of Materials Chemistry and Materials Science Composite materials Crystal structure Electronics and Microelectronics Instrumentation Manganese dioxide Materials Science Monomers Morphology Nanofibers Optical and Electronic Materials Oxidation Polyanilines Polymerization Potassium Potassium permanganate Scanning electron microscopy Sodium sulfate Solid State Physics Strong interactions (field theory) |
title | Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Preparation%20of%20Polyaniline%20Nanofibers/Manganese%20Dioxide%20Composites%20at%20the%20Interface%20of%20Oil/Water%20for%20Supercapacitive%20Application&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Xiong,%20Shanxin&rft.date=2019-10-01&rft.volume=48&rft.issue=10&rft.spage=6666&rft.epage=6674&rft.pages=6666-6674&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07469-z&rft_dat=%3Cproquest_cross%3E2267588059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-833a8d671efa07ee021e626ad1572cc45e948031f9b99c79b4900c176d1ed17f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267588059&rft_id=info:pmid/&rfr_iscdi=true |