Loading…
Bayesian parametric and semiparametric factor models for large realized covariance matrices
Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametricall...
Saved in:
Published in: | Journal of applied econometrics (Chichester, England) England), 2019-08, Vol.34 (5), p.641-660 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33 |
container_end_page | 660 |
container_issue | 5 |
container_start_page | 641 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 34 |
creator | Jin, Xin Maheu, John M. Yang, Qiao |
description | Summary
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes. |
doi_str_mv | 10.1002/jae.2685 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267632007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267632007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</originalsourceid><addsrcrecordid>eNp1kD9PAzEMxSMEEqUg8REisbBccXLNJTeWir-qxAITQ-QmDrrqrleSFlQ-PSllYGGyZf38_PwYOxcwEgDyaoE0kpVRB2wgoK4LIZU6ZAMwpiy0VPKYnaS0AIAKQA_Y6zVuKTW45CuM2NE6No7j0vNEXfNnFNCt-8i73lObeMhti_GNeCRsmy_y3PUfGLOOI97hboXSKTsK2CY6-61D9nJ78zy9L2ZPdw_TyaxwZQWqkME4FXRVZlNBYOXVuCbQYwg418aLUPtajWmuDEGQZU1GO0G-NnOnhaSyHLKLve4q9u8bSmu76DdxmU9aKassLPOrmbrcUy72KUUKdhWbDuPWCrC76GyOzu6iy2ixRz-blrb_cvZxcvPDfwPsn3Aj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267632007</pqid></control><display><type>article</type><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Jin, Xin ; Maheu, John M. ; Yang, Qiao</creator><creatorcontrib>Jin, Xin ; Maheu, John M. ; Yang, Qiao</creatorcontrib><description>Summary
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2685</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Assets ; Bayesian analysis ; Covariance matrix ; Dirichlet problem ; Econometrics ; Markov processes ; Matrices</subject><ispartof>Journal of applied econometrics (Chichester, England), 2019-08, Vol.34 (5), p.641-660</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</citedby><cites>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Maheu, John M.</creatorcontrib><creatorcontrib>Yang, Qiao</creatorcontrib><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</description><subject>Assets</subject><subject>Bayesian analysis</subject><subject>Covariance matrix</subject><subject>Dirichlet problem</subject><subject>Econometrics</subject><subject>Markov processes</subject><subject>Matrices</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kD9PAzEMxSMEEqUg8REisbBccXLNJTeWir-qxAITQ-QmDrrqrleSFlQ-PSllYGGyZf38_PwYOxcwEgDyaoE0kpVRB2wgoK4LIZU6ZAMwpiy0VPKYnaS0AIAKQA_Y6zVuKTW45CuM2NE6No7j0vNEXfNnFNCt-8i73lObeMhti_GNeCRsmy_y3PUfGLOOI97hboXSKTsK2CY6-61D9nJ78zy9L2ZPdw_TyaxwZQWqkME4FXRVZlNBYOXVuCbQYwg418aLUPtajWmuDEGQZU1GO0G-NnOnhaSyHLKLve4q9u8bSmu76DdxmU9aKassLPOrmbrcUy72KUUKdhWbDuPWCrC76GyOzu6iy2ixRz-blrb_cvZxcvPDfwPsn3Aj</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Jin, Xin</creator><creator>Maheu, John M.</creator><creator>Yang, Qiao</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201908</creationdate><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><author>Jin, Xin ; Maheu, John M. ; Yang, Qiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assets</topic><topic>Bayesian analysis</topic><topic>Covariance matrix</topic><topic>Dirichlet problem</topic><topic>Econometrics</topic><topic>Markov processes</topic><topic>Matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Maheu, John M.</creatorcontrib><creatorcontrib>Yang, Qiao</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xin</au><au>Maheu, John M.</au><au>Yang, Qiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian parametric and semiparametric factor models for large realized covariance matrices</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2019-08</date><risdate>2019</risdate><volume>34</volume><issue>5</issue><spage>641</spage><epage>660</epage><pages>641-660</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.2685</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2019-08, Vol.34 (5), p.641-660 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_journals_2267632007 |
source | International Bibliography of the Social Sciences (IBSS); Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Assets Bayesian analysis Covariance matrix Dirichlet problem Econometrics Markov processes Matrices |
title | Bayesian parametric and semiparametric factor models for large realized covariance matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20parametric%20and%20semiparametric%20factor%20models%20for%20large%20realized%20covariance%20matrices&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Jin,%20Xin&rft.date=2019-08&rft.volume=34&rft.issue=5&rft.spage=641&rft.epage=660&rft.pages=641-660&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2685&rft_dat=%3Cproquest_cross%3E2267632007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267632007&rft_id=info:pmid/&rfr_iscdi=true |