Loading…

Bayesian parametric and semiparametric factor models for large realized covariance matrices

Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametricall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied econometrics (Chichester, England) England), 2019-08, Vol.34 (5), p.641-660
Main Authors: Jin, Xin, Maheu, John M., Yang, Qiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33
cites cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33
container_end_page 660
container_issue 5
container_start_page 641
container_title Journal of applied econometrics (Chichester, England)
container_volume 34
creator Jin, Xin
Maheu, John M.
Yang, Qiao
description Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.
doi_str_mv 10.1002/jae.2685
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267632007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267632007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</originalsourceid><addsrcrecordid>eNp1kD9PAzEMxSMEEqUg8REisbBccXLNJTeWir-qxAITQ-QmDrrqrleSFlQ-PSllYGGyZf38_PwYOxcwEgDyaoE0kpVRB2wgoK4LIZU6ZAMwpiy0VPKYnaS0AIAKQA_Y6zVuKTW45CuM2NE6No7j0vNEXfNnFNCt-8i73lObeMhti_GNeCRsmy_y3PUfGLOOI97hboXSKTsK2CY6-61D9nJ78zy9L2ZPdw_TyaxwZQWqkME4FXRVZlNBYOXVuCbQYwg418aLUPtajWmuDEGQZU1GO0G-NnOnhaSyHLKLve4q9u8bSmu76DdxmU9aKassLPOrmbrcUy72KUUKdhWbDuPWCrC76GyOzu6iy2ixRz-blrb_cvZxcvPDfwPsn3Aj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267632007</pqid></control><display><type>article</type><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Jin, Xin ; Maheu, John M. ; Yang, Qiao</creator><creatorcontrib>Jin, Xin ; Maheu, John M. ; Yang, Qiao</creatorcontrib><description>Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2685</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Assets ; Bayesian analysis ; Covariance matrix ; Dirichlet problem ; Econometrics ; Markov processes ; Matrices</subject><ispartof>Journal of applied econometrics (Chichester, England), 2019-08, Vol.34 (5), p.641-660</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</citedby><cites>FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Maheu, John M.</creatorcontrib><creatorcontrib>Yang, Qiao</creatorcontrib><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</description><subject>Assets</subject><subject>Bayesian analysis</subject><subject>Covariance matrix</subject><subject>Dirichlet problem</subject><subject>Econometrics</subject><subject>Markov processes</subject><subject>Matrices</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kD9PAzEMxSMEEqUg8REisbBccXLNJTeWir-qxAITQ-QmDrrqrleSFlQ-PSllYGGyZf38_PwYOxcwEgDyaoE0kpVRB2wgoK4LIZU6ZAMwpiy0VPKYnaS0AIAKQA_Y6zVuKTW45CuM2NE6No7j0vNEXfNnFNCt-8i73lObeMhti_GNeCRsmy_y3PUfGLOOI97hboXSKTsK2CY6-61D9nJ78zy9L2ZPdw_TyaxwZQWqkME4FXRVZlNBYOXVuCbQYwg418aLUPtajWmuDEGQZU1GO0G-NnOnhaSyHLKLve4q9u8bSmu76DdxmU9aKassLPOrmbrcUy72KUUKdhWbDuPWCrC76GyOzu6iy2ixRz-blrb_cvZxcvPDfwPsn3Aj</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Jin, Xin</creator><creator>Maheu, John M.</creator><creator>Yang, Qiao</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201908</creationdate><title>Bayesian parametric and semiparametric factor models for large realized covariance matrices</title><author>Jin, Xin ; Maheu, John M. ; Yang, Qiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assets</topic><topic>Bayesian analysis</topic><topic>Covariance matrix</topic><topic>Dirichlet problem</topic><topic>Econometrics</topic><topic>Markov processes</topic><topic>Matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Maheu, John M.</creatorcontrib><creatorcontrib>Yang, Qiao</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xin</au><au>Maheu, John M.</au><au>Yang, Qiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian parametric and semiparametric factor models for large realized covariance matrices</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2019-08</date><risdate>2019</risdate><volume>34</volume><issue>5</issue><spage>641</spage><epage>660</epage><pages>641-660</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.2685</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2019-08, Vol.34 (5), p.641-660
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2267632007
source International Bibliography of the Social Sciences (IBSS); Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Assets
Bayesian analysis
Covariance matrix
Dirichlet problem
Econometrics
Markov processes
Matrices
title Bayesian parametric and semiparametric factor models for large realized covariance matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20parametric%20and%20semiparametric%20factor%20models%20for%20large%20realized%20covariance%20matrices&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Jin,%20Xin&rft.date=2019-08&rft.volume=34&rft.issue=5&rft.spage=641&rft.epage=660&rft.pages=641-660&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2685&rft_dat=%3Cproquest_cross%3E2267632007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3605-2f8c5f763000f1a6d549e0740fab78d1f9d954eb58e0f239e87c1ed98bc712e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267632007&rft_id=info:pmid/&rfr_iscdi=true