Loading…
Road roughness estimation based on discrete Kalman filter with unknown input
The road roughness acts as a disturbance input to the vehicle dynamics, and causes undesirable vibrations associated with the ride and handing characteristics. Furthermore, the accurate measurement of road roughness plays a key role in better understanding a vehicle dynamic behaviour and active susp...
Saved in:
Published in: | Vehicle system dynamics 2019-10, Vol.57 (10), p.1530-1544 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The road roughness acts as a disturbance input to the vehicle dynamics, and causes undesirable vibrations associated with the ride and handing characteristics. Furthermore, the accurate measurement of road roughness plays a key role in better understanding a vehicle dynamic behaviour and active suspension control systems. However, the direct measurement by laser profilometer or other distance sensors are not trivial due to technical and economic issues. This study proposes a new road roughness estimation method by using the discrete Kalman filter with unknown input (DKF-UI). This algorithm is built on a quarter-car model and uses the measurements of the wheel stroke (suspension deflection), and the acceleration of the sprung mass and unsprung mass. The estimation results are compared to the measurements by laser profilometer in-vehicle test. |
---|---|
ISSN: | 0042-3114 1744-5159 |
DOI: | 10.1080/00423114.2018.1524151 |