Loading…

Revealing the effects of aerosol deposition on the substrate‐film interface using NaCl coating

Aerosol deposition is a feasible method of fabricating dense ceramic films at room temperature by the impact consolidation of submicron‐sized particles on ceramic, metal, glass, and polymer substrates at a rapid rate. Despite the potential usefulness of the aerosol deposition process, there are issu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2019-10, Vol.102 (10), p.5763-5771
Main Authors: Khansur, Neamul H., Eckstein, Udo, Li, Yizhe, Hall, David A., Kaschta, Joachim, Webber, Kyle G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerosol deposition is a feasible method of fabricating dense ceramic films at room temperature by the impact consolidation of submicron‐sized particles on ceramic, metal, glass, and polymer substrates at a rapid rate. Despite the potential usefulness of the aerosol deposition process, there are issues, such as deposition mechanisms and structure of the film‐substrate interface, that are not well understood. We have used complementary structural and microstructural analysis to capture the state of the substrate surface after the aerosol deposition process. The results reveal that modification of the substrate surface by the ejected submicron‐sized particles is essential for the formation of anchoring layer, thereby, a change in internal residual stress state and surface free energy of the substrate is required to deposit film using AD process. Our analysis also suggests that the adhesion between the metal substrate and ceramic particles is possibly contributed by both physical bonding and mechanical interlocking. Steps involved for investigation of the effect of AD processing at the substrate interface using NaCl coating.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.16489