Loading…

Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration

•Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2019-08, Vol.159, p.113968, Article 113968
Main Authors: Zhang, Hengyun, Wu, Xiaoyu, Wu, Qingyu, Xu, Shen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3
cites cdi_FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3
container_end_page
container_issue
container_start_page 113968
container_title Applied thermal engineering
container_volume 159
creator Zhang, Hengyun
Wu, Xiaoyu
Wu, Qingyu
Xu, Shen
description •Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.
doi_str_mv 10.1016/j.applthermaleng.2019.113968
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267747368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118365608</els_id><sourcerecordid>2267747368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3</originalsourceid><addsrcrecordid>eNqNkE9P3DAQxaOqSKXQ72CJXrPYceJ4JS7Vin8SCA7t2Zq1x8GrrB1sB3X5BHzselkuvXGa0ei9N3q_qvrJ6IJRJs43C5imMT9h3MKIflg0lC0XjPGlkF-qYyZ7XneCiq9l592ybjlj36rvKW0oZY3s2-Pq7fLvhNFt0WcYifMvmLIbILvgSbDkI5sUjQ1l8xr35xHigHVyr2jIGnLGuCPbYOYRyZycH8jTbh2dIY-rewK-aELOYUtG9zyXqw5h3It08NYNc3z_dlodWRgT_viYJ9Wfq8vfq5v67uH6dvXrrtZ82edaUinWrGlMw4UuDSiYvjWytX1nZWECIDqx7oy0AJK1LaWAwDTTHKS2HfKT6uyQO8XwPJe2ahPm6MtL1TSi79ueC1lUFweVjiGliFZNBRLEnWJU7dmrjfqfvdqzVwf2xX51sGNp8uIwqqQdFnjGRdRZmeA-F_QPwGuZjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267747368</pqid></control><display><type>article</type><title>Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Hengyun ; Wu, Xiaoyu ; Wu, Qingyu ; Xu, Shen</creator><creatorcontrib>Zhang, Hengyun ; Wu, Xiaoyu ; Wu, Qingyu ; Xu, Shen</creatorcontrib><description>•Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.113968</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Columns (structural) ; Configuration management ; Cooling ; Energy dissipation ; Heat spreading plate ; Heat transfer ; Hybrid cooling ; Hybrid systems ; Liquid cooling ; Modules ; Nonuniformity ; Phase change material (PCM) ; Phase change materials ; Phase transitions ; Plates (structural members) ; Temperature control ; Temperature gradients ; Temperature nonuniformity factor ; Thermal column ; Thermal cycling ; Thermal management ; Thermodynamics</subject><ispartof>Applied thermal engineering, 2019-08, Vol.159, p.113968, Article 113968</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3</citedby><cites>FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3</cites><orcidid>0000-0002-2141-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Hengyun</creatorcontrib><creatorcontrib>Wu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Xu, Shen</creatorcontrib><title>Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration</title><title>Applied thermal engineering</title><description>•Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.</description><subject>Batteries</subject><subject>Columns (structural)</subject><subject>Configuration management</subject><subject>Cooling</subject><subject>Energy dissipation</subject><subject>Heat spreading plate</subject><subject>Heat transfer</subject><subject>Hybrid cooling</subject><subject>Hybrid systems</subject><subject>Liquid cooling</subject><subject>Modules</subject><subject>Nonuniformity</subject><subject>Phase change material (PCM)</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Plates (structural members)</subject><subject>Temperature control</subject><subject>Temperature gradients</subject><subject>Temperature nonuniformity factor</subject><subject>Thermal column</subject><subject>Thermal cycling</subject><subject>Thermal management</subject><subject>Thermodynamics</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9P3DAQxaOqSKXQ72CJXrPYceJ4JS7Vin8SCA7t2Zq1x8GrrB1sB3X5BHzselkuvXGa0ei9N3q_qvrJ6IJRJs43C5imMT9h3MKIflg0lC0XjPGlkF-qYyZ7XneCiq9l592ybjlj36rvKW0oZY3s2-Pq7fLvhNFt0WcYifMvmLIbILvgSbDkI5sUjQ1l8xr35xHigHVyr2jIGnLGuCPbYOYRyZycH8jTbh2dIY-rewK-aELOYUtG9zyXqw5h3It08NYNc3z_dlodWRgT_viYJ9Wfq8vfq5v67uH6dvXrrtZ82edaUinWrGlMw4UuDSiYvjWytX1nZWECIDqx7oy0AJK1LaWAwDTTHKS2HfKT6uyQO8XwPJe2ahPm6MtL1TSi79ueC1lUFweVjiGliFZNBRLEnWJU7dmrjfqfvdqzVwf2xX51sGNp8uIwqqQdFnjGRdRZmeA-F_QPwGuZjA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Zhang, Hengyun</creator><creator>Wu, Xiaoyu</creator><creator>Wu, Qingyu</creator><creator>Xu, Shen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2141-9543</orcidid></search><sort><creationdate>20190801</creationdate><title>Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration</title><author>Zhang, Hengyun ; Wu, Xiaoyu ; Wu, Qingyu ; Xu, Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Columns (structural)</topic><topic>Configuration management</topic><topic>Cooling</topic><topic>Energy dissipation</topic><topic>Heat spreading plate</topic><topic>Heat transfer</topic><topic>Hybrid cooling</topic><topic>Hybrid systems</topic><topic>Liquid cooling</topic><topic>Modules</topic><topic>Nonuniformity</topic><topic>Phase change material (PCM)</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Plates (structural members)</topic><topic>Temperature control</topic><topic>Temperature gradients</topic><topic>Temperature nonuniformity factor</topic><topic>Thermal column</topic><topic>Thermal cycling</topic><topic>Thermal management</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hengyun</creatorcontrib><creatorcontrib>Wu, Xiaoyu</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Xu, Shen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hengyun</au><au>Wu, Xiaoyu</au><au>Wu, Qingyu</au><au>Xu, Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>159</volume><spage>113968</spage><pages>113968-</pages><artnum>113968</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Hybrid PCM and bottom liquid cooling of large battery module were experimentally studied.•Hybrid cooling significantly reduces maximum temperature and temperature nonuniformity.•Battery temperature levels off after melting point C in hybrid cooling instead of ramp-up for PCM cooling.•Hybrid cooling maintains Tbmax below 50 °C and ΔTb below 3.5 °C in cyclic discharge rate over 5C.•Non-uniformity temperature factor is lower in comparison with others’ work. A hybrid thermal management system (TMS) using phase change material (PCM) and bottom liquid cooling techniques for a large-sized power battery module was experimentally investigated. The system consisted of 106 test batteries in 18650 format, connected with a heat spreading plate, adjacent thermal columns and a cold plate populated with mini-channels installed beneath the module for liquid cooling to form the interconnected thermal structure. The experiment was conducted by heating the test batteries and monitoring representative battery temperatures. Three different heat dissipation options were studied with the same test bench, including the PCM cooling, liquid cooling and the hybrid cooling. Comparing with the liquid cooling, the hybrid cooling reduced the maximum battery temperature and temperature difference at steady-state. A temperature nonuniformity factor is introduced to evaluate the temperature difference across the module of different sizes. In addition, the test with the hybrid cooling for battery module under the cyclic working conditions exhibited sustaining temperature control, which is favorable for the battery module in continuous operation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.113968</doi><orcidid>https://orcid.org/0000-0002-2141-9543</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-08, Vol.159, p.113968, Article 113968
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2267747368
source ScienceDirect Freedom Collection
subjects Batteries
Columns (structural)
Configuration management
Cooling
Energy dissipation
Heat spreading plate
Heat transfer
Hybrid cooling
Hybrid systems
Liquid cooling
Modules
Nonuniformity
Phase change material (PCM)
Phase change materials
Phase transitions
Plates (structural members)
Temperature control
Temperature gradients
Temperature nonuniformity factor
Thermal column
Thermal cycling
Thermal management
Thermodynamics
title Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20thermal%20performance%20of%20large-sized%20battery%20module%20using%20hybrid%20PCM%20and%20bottom%20liquid%20cooling%20configuration&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20Hengyun&rft.date=2019-08-01&rft.volume=159&rft.spage=113968&rft.pages=113968-&rft.artnum=113968&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.113968&rft_dat=%3Cproquest_cross%3E2267747368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-8086b122d236c8740ad74d84f75f8016aa656b5d8faa814400aea1c1c3a8cf5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267747368&rft_id=info:pmid/&rfr_iscdi=true