Loading…

Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application

Copper–indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical p...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2019-08, Vol.125 (8), p.1-9, Article 579
Main Authors: Bouich, Amal, Hartiti, Bouchaib, Ullah, Shafi, Ullah, Hanif, Ebn Touhami, Mohamed, Santos, D. M. F., Mari, Bernabe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93
cites cdi_FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93
container_end_page 9
container_issue 8
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 125
creator Bouich, Amal
Hartiti, Bouchaib
Ullah, Shafi
Ullah, Hanif
Ebn Touhami, Mohamed
Santos, D. M. F.
Mari, Bernabe
description Copper–indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical properties of CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect, respectively. After optimization, the deposited films structure, grain size, and crystallinity became more important with an increase of annealing time at 370 °C for 20 min. Transmission electron microscopy (TEM) analysis shows that the interface sheets are well crystallized and the inter planer distance are 0.25 nm, 0.28 nm, and 0.36 nm. The atomic force microscopy (AFM) observation shows that the grain size and roughness can be tolerated by optimizing the annealing time. The strong absorbance and low transmittance were observed for the prepared films with a suitable energy bandgap about 1.46 eV. The Hall effect measurement system examined that CIGS films exhibited optimal electrical properties, resistivity, carrier mobility, and carrier concentration which were determined to be 4.22 × 10 6  Ω cm, 6.18 × 10 2  cm 2  V −1  S −1 and 4.22 × 10 6  cm −3 , respectively. The optoelectronic properties of CIGS material recommended being used for the photovoltaic application.
doi_str_mv 10.1007/s00339-019-2874-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268172561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268172561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAix6iyST7dZSitVDoQT2HJM22KdtNTLbK-utdXcGTc5nLvM_LPAhdMnrLKC3uEqWcV4SyikBZCCKO0IQJDoTmnB6jCa1EQUpe5afoLKUdHUYATFC7Cp23jTVd9K0z2GxVVKaz0X2qzvkW-xrPDot2rq6fbwB3W9fi2jX7hDfRf7RY9ziFqHoc-uibPrmEax9x2PrOv_umUwNThdA484M7Rye1apK9-N1T9Pr48DJ7IsvVfDG7XxIDhRBkbUzOeCao0bZiBS0h41Dm1FghuMhhDUJnWpu64np4ipelqSDLFDCmQZuKT9HVyA3Rvx1s6uTOH2I7VEqAvGQFZEPBFLHxykSfUrS1DNHtVewlo_Jbqxy1ykGr_NYqxZCBMTO87dqNjX_k_0NfOR97JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268172561</pqid></control><display><type>article</type><title>Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application</title><source>Springer Link</source><creator>Bouich, Amal ; Hartiti, Bouchaib ; Ullah, Shafi ; Ullah, Hanif ; Ebn Touhami, Mohamed ; Santos, D. M. F. ; Mari, Bernabe</creator><creatorcontrib>Bouich, Amal ; Hartiti, Bouchaib ; Ullah, Shafi ; Ullah, Hanif ; Ebn Touhami, Mohamed ; Santos, D. M. F. ; Mari, Bernabe</creatorcontrib><description>Copper–indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical properties of CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect, respectively. After optimization, the deposited films structure, grain size, and crystallinity became more important with an increase of annealing time at 370 °C for 20 min. Transmission electron microscopy (TEM) analysis shows that the interface sheets are well crystallized and the inter planer distance are 0.25 nm, 0.28 nm, and 0.36 nm. The atomic force microscopy (AFM) observation shows that the grain size and roughness can be tolerated by optimizing the annealing time. The strong absorbance and low transmittance were observed for the prepared films with a suitable energy bandgap about 1.46 eV. The Hall effect measurement system examined that CIGS films exhibited optimal electrical properties, resistivity, carrier mobility, and carrier concentration which were determined to be 4.22 × 10 6  Ω cm, 6.18 × 10 2  cm 2  V −1  S −1 and 4.22 × 10 6  cm −3 , respectively. The optoelectronic properties of CIGS material recommended being used for the photovoltaic application.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-019-2874-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annealing ; Applied physics ; Atomic force microscopy ; Carrier density ; Carrier mobility ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Copper indium gallium selenides ; Crystallization ; Electrical properties ; Electromagnetism ; Glass substrates ; Grain size ; Hall effect ; Machines ; Manufacturing ; Materials science ; Microscopes ; Microscopy ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Optimization ; Optoelectronics ; Physics ; Physics and Astronomy ; Processes ; Scanning electron microscopy ; Spray pyrolysis ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2019-08, Vol.125 (8), p.1-9, Article 579</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93</citedby><cites>FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Hartiti, Bouchaib</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Ullah, Hanif</creatorcontrib><creatorcontrib>Ebn Touhami, Mohamed</creatorcontrib><creatorcontrib>Santos, D. M. F.</creatorcontrib><creatorcontrib>Mari, Bernabe</creatorcontrib><title>Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Copper–indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical properties of CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect, respectively. After optimization, the deposited films structure, grain size, and crystallinity became more important with an increase of annealing time at 370 °C for 20 min. Transmission electron microscopy (TEM) analysis shows that the interface sheets are well crystallized and the inter planer distance are 0.25 nm, 0.28 nm, and 0.36 nm. The atomic force microscopy (AFM) observation shows that the grain size and roughness can be tolerated by optimizing the annealing time. The strong absorbance and low transmittance were observed for the prepared films with a suitable energy bandgap about 1.46 eV. The Hall effect measurement system examined that CIGS films exhibited optimal electrical properties, resistivity, carrier mobility, and carrier concentration which were determined to be 4.22 × 10 6  Ω cm, 6.18 × 10 2  cm 2  V −1  S −1 and 4.22 × 10 6  cm −3 , respectively. The optoelectronic properties of CIGS material recommended being used for the photovoltaic application.</description><subject>Annealing</subject><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Copper indium gallium selenides</subject><subject>Crystallization</subject><subject>Electrical properties</subject><subject>Electromagnetism</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Hall effect</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Spray pyrolysis</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAix6iyST7dZSitVDoQT2HJM22KdtNTLbK-utdXcGTc5nLvM_LPAhdMnrLKC3uEqWcV4SyikBZCCKO0IQJDoTmnB6jCa1EQUpe5afoLKUdHUYATFC7Cp23jTVd9K0z2GxVVKaz0X2qzvkW-xrPDot2rq6fbwB3W9fi2jX7hDfRf7RY9ziFqHoc-uibPrmEax9x2PrOv_umUwNThdA484M7Rye1apK9-N1T9Pr48DJ7IsvVfDG7XxIDhRBkbUzOeCao0bZiBS0h41Dm1FghuMhhDUJnWpu64np4ipelqSDLFDCmQZuKT9HVyA3Rvx1s6uTOH2I7VEqAvGQFZEPBFLHxykSfUrS1DNHtVewlo_Jbqxy1ykGr_NYqxZCBMTO87dqNjX_k_0NfOR97JQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Bouich, Amal</creator><creator>Hartiti, Bouchaib</creator><creator>Ullah, Shafi</creator><creator>Ullah, Hanif</creator><creator>Ebn Touhami, Mohamed</creator><creator>Santos, D. M. F.</creator><creator>Mari, Bernabe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application</title><author>Bouich, Amal ; Hartiti, Bouchaib ; Ullah, Shafi ; Ullah, Hanif ; Ebn Touhami, Mohamed ; Santos, D. M. F. ; Mari, Bernabe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Copper indium gallium selenides</topic><topic>Crystallization</topic><topic>Electrical properties</topic><topic>Electromagnetism</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Hall effect</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Spray pyrolysis</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Hartiti, Bouchaib</creatorcontrib><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Ullah, Hanif</creatorcontrib><creatorcontrib>Ebn Touhami, Mohamed</creatorcontrib><creatorcontrib>Santos, D. M. F.</creatorcontrib><creatorcontrib>Mari, Bernabe</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouich, Amal</au><au>Hartiti, Bouchaib</au><au>Ullah, Shafi</au><au>Ullah, Hanif</au><au>Ebn Touhami, Mohamed</au><au>Santos, D. M. F.</au><au>Mari, Bernabe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>125</volume><issue>8</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>579</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Copper–indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical properties of CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect, respectively. After optimization, the deposited films structure, grain size, and crystallinity became more important with an increase of annealing time at 370 °C for 20 min. Transmission electron microscopy (TEM) analysis shows that the interface sheets are well crystallized and the inter planer distance are 0.25 nm, 0.28 nm, and 0.36 nm. The atomic force microscopy (AFM) observation shows that the grain size and roughness can be tolerated by optimizing the annealing time. The strong absorbance and low transmittance were observed for the prepared films with a suitable energy bandgap about 1.46 eV. The Hall effect measurement system examined that CIGS films exhibited optimal electrical properties, resistivity, carrier mobility, and carrier concentration which were determined to be 4.22 × 10 6  Ω cm, 6.18 × 10 2  cm 2  V −1  S −1 and 4.22 × 10 6  cm −3 , respectively. The optoelectronic properties of CIGS material recommended being used for the photovoltaic application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-019-2874-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2019-08, Vol.125 (8), p.1-9, Article 579
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2268172561
source Springer Link
subjects Annealing
Applied physics
Atomic force microscopy
Carrier density
Carrier mobility
Characterization and Evaluation of Materials
Condensed Matter Physics
Copper indium gallium selenides
Crystallization
Electrical properties
Electromagnetism
Glass substrates
Grain size
Hall effect
Machines
Manufacturing
Materials science
Microscopes
Microscopy
Nanotechnology
Optical and Electronic Materials
Optical properties
Optimization
Optoelectronics
Physics
Physics and Astronomy
Processes
Scanning electron microscopy
Spray pyrolysis
Surfaces and Interfaces
Thin Films
title Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20characterization%20of%20CuInGa(S)2%20thin%20films%20grown%20by%20spray%20pyrolysis%20for%20photovoltaic%20application&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Bouich,%20Amal&rft.date=2019-08-01&rft.volume=125&rft.issue=8&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=579&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-019-2874-4&rft_dat=%3Cproquest_cross%3E2268172561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2744-dcc613540cbe917082532860ce443462d24b5bbcf93b839388c9255a211b2bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268172561&rft_id=info:pmid/&rfr_iscdi=true